\(1 = 18 - 17 \) | \(2 = \frac{ 8 }{ 11 - 7 }\) | \(3 = \frac{ 18 }{ 7 - 1 }\) | \(4 = 8 - ( 11 - 7 )\) |
\(5 = \sqrt{17 \cdot 1 + 8 }\) | \(6 = 7 - 1^{18 }\) | \(7 = 8 - 1^{17 }\) | \(8 = 17 - \sqrt{81 }\) |
\(9 = 1^{17} + 8 \) | \(10 = 81 - 71 \) | \(11 = ( 8 - 7 ) \cdot 11 \) | \(12 = 11 - 7 + 8 \) |
\(13 = ( 11 - 8 )! + 7 \) | \(14 = 17 - \sqrt{\sqrt{81 }}\) | \(15 = \sqrt{81} - 1 + 7 \) | \(16 = 17 - 1^{8 }\) |
\(17 = 1^{8} \cdot 17 \) | \(18 = 1^{8} + 17 \) | \(19 = 1^{7} + 18 \) | \(20 = 17 + \sqrt{\sqrt{81 }}\) |
\(21 = ( 11 - 8 ) \cdot 7 \) | \(22 = ( 1 + 1 ) \cdot 7 + 8 \) | \(23 = 17 + \sqrt{\sqrt{81 }}!\) | \(24 = 17 - 1 + 8 \) |
\(25 = 17 \cdot 1 + 8 \) | \(26 = 17 + \sqrt{81 }\) | \(27 = \sqrt{\sqrt{\sqrt{81}}^{7 - 1 }}\) | \(28 = \frac{ 8 }{ 1 + 1 } \cdot 7 \) |
\(29 = \sqrt{\frac{ 7! }{ \sqrt{\sqrt{81}}! } + 1 }\) | \(30 = ( 1 + 1 ) \cdot ( 7 + 8 )\) | \(31 = ( \frac{ 8 }{ 1 + 1 } )! + 7 \) | \(32 = ( 11 - 7 ) \cdot 8 \) |
\(33 = ?\) | \(34 = ?\) | \(35 = 17 + 18 \) | \(36 = ( 7 - 1 ) \cdot \sqrt{\sqrt{81 }}!\) |
\(37 = \sqrt{\sqrt{( 7 - 1 )^{8}}} + 1 \) | \(38 = \sqrt{\sqrt{7^{8}}} - 11 \) | \(39 = \frac{ 78 }{ 1 + 1 }\) | \(40 = \frac{ ( 7 - 1 )! }{ 18 }\) |
\(41 = 7^{1 + 1} - 8 \) | \(42 = ( 11 - 8 )! \cdot 7 \) | \(43 = \sqrt{\sqrt{81}}! \cdot 7 + 1 \) | \(44 = ?\) |
\(45 = 7 \cdot 8 - 11 \) | \(46 = ?\) | \(47 = ( 7 - 1 ) \cdot 8 - 1 \) | \(48 = ( 7 - 1 \cdot 1 ) \cdot 8 \) |
\(49 = 7^{1^{8} + 1 }\) | \(50 = ( 8 - 1 ) \cdot 7 + 1 \) | \(51 = 17 \cdot \sqrt{\sqrt{81 }}\) | \(52 = ?\) |
\(53 = 71 - 18 \) | \(54 = ( 7 - 1 ) \cdot \sqrt{81 }\) | \(55 = ( 7 \cdot 8 - 1 ) \cdot 1 \) | \(56 = ( \sqrt{81} - 1 ) \cdot 7 \) |
\(57 = 7^{1 + 1} + 8 \) | \(58 = 7 \cdot 8 + 1 + 1 \) | \(59 = ?\) | \(60 = \sqrt{\sqrt{7^{8}}} + 11 \) |
\(61 = ?\) | \(62 = 71 - \sqrt{81 }\) | \(63 = 71 \cdot 1 - 8 \) | \(64 = 81 - 17 \) |
\(65 = 71 - \sqrt{\sqrt{81 }}!\) | \(66 = ?\) | \(67 = 78 - 11 \) | \(68 = 71 - \sqrt{\sqrt{81 }}\) |
\(69 = 11 \cdot 7 - 8 \) | \(70 = 71 - 1^{8 }\) | \(71 = 1^{8} \cdot 71 \) | \(72 = 1^{8} + 71 \) |
\(73 = 81 - 1 - 7 \) | \(74 = 81 \cdot 1 - 7 \) | \(75 = 81 + 1 - 7 \) | \(76 = 87 - 11 \) |
\(77 = ( 78 - 1 ) \cdot 1 \) | \(78 = 71 - 1 + 8 \) | \(79 = 71 \cdot 1 + 8 \) | \(80 = 71 + \sqrt{81 }\) |
\(81 = 11 \cdot 8 - 7 \) | \(82 = 1^{7} + 81 \) | \(83 = ?\) | \(84 = ?\) |
\(85 = 11 \cdot 7 + 8 \) | \(86 = ( 87 - 1 ) \cdot 1 \) | \(87 = 81 - 1 + 7 \) | \(88 = 81 \cdot 1 + 7 \) |
\(89 = 11 + 78 \) | \(90 = \frac{ ( 7 - 1 \cdot 1 )! }{ 8 }\) | \(91 = \frac{ ( 7 - 1 )! }{ 8 } + 1 \) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = 11 \cdot 8 + 7 \) | \(96 = ?\) |
\(97 = ?\) | \(98 = 11 + 87 \) | \(99 = ?\) | \(100 = ?\) |