\(1 = 1^{\sqrt{169 }}\) | \(2 = \frac{ 16 }{ 9 - 1 }\) | \(3 = 19 - 16 \) | \(4 = 9 - ( 11 - 6 )\) |
\(5 = 6 - 1^{19 }\) | \(6 = ( 19 - 16 )!\) | \(7 = 16 \cdot 1 - 9 \) | \(8 = 11 + 6 - 9 \) |
\(9 = 1^{16} \cdot 9 \) | \(10 = 1^{16} + 9 \) | \(11 = \sqrt{16 \cdot 9} - 1 \) | \(12 = \sqrt{169} - 1 \) |
\(13 = \sqrt{169} \cdot 1 \) | \(14 = \sqrt{169} + 1 \) | \(15 = \sqrt{196} + 1 \) | \(16 = 1^{9} \cdot 16 \) |
\(17 = 1^{9} + 16 \) | \(18 = 19 - 1^{6 }\) | \(19 = 1^{6} \cdot 19 \) | \(20 = 1^{6} + 19 \) |
\(21 = \sqrt{\sqrt{16}} + 19 \) | \(22 = \frac{ 11 \cdot 6 }{ \sqrt{9 } }\) | \(23 = \sqrt{16} + 19 \) | \(24 = 16 - 1 + 9 \) |
\(25 = 16 \cdot 1 + 9 \) | \(26 = 11 + 6 + 9 \) | \(27 = 11 \cdot \sqrt{9} - 6 \) | \(28 = ( 1 + 6 ) \cdot ( 1 + \sqrt{9 } )\) |
\(29 = 6 \cdot \sqrt{9} + 11 \) | \(30 = 91 - 61 \) | \(31 = \sqrt{961} \cdot 1 \) | \(32 = \sqrt{961} + 1 \) |
\(33 = ( 9 - 6 ) \cdot 11 \) | \(34 = \sqrt{16}! + 1 + 9 \) | \(35 = 16 + 19 \) | \(36 = 6^{11 - 9 }\) |
\(37 = \sqrt{16} \cdot 9 + 1 \) | \(38 = \sqrt{\sqrt{16}} \cdot 19 \) | \(39 = 11 \cdot \sqrt{9} + 6 \) | \(40 = ( 1 + 9 ) \cdot \sqrt{16 }\) |
\(41 = \frac{ ( 6 - 1 )! }{ \sqrt{9} } + 1 \) | \(42 = 61 - 19 \) | \(43 = 6 \cdot 9 - 11 \) | \(44 = ( 6 - 1 ) \cdot 9 - 1 \) |
\(45 = ( 11 - 6 ) \cdot 9 \) | \(46 = ( 6 - 1 ) \cdot 9 + 1 \) | \(47 = 16 \cdot \sqrt{9} - 1 \) | \(48 = \frac{ 96 }{ 1 + 1 }\) |
\(49 = 16 \cdot \sqrt{9} + 1 \) | \(50 = ( 6 - 1 ) \cdot ( 1 + 9 )\) | \(51 = 61 - 1 - 9 \) | \(52 = 61 \cdot 1 - 9 \) |
\(53 = 61 + 1 - 9 \) | \(54 = ( 1 - 1 + 6 ) \cdot 9 \) | \(55 = ( 1 + 1 )^{6} - 9 \) | \(56 = 6 \cdot 9 + 1 + 1 \) |
\(57 = 11 \cdot 6 - 9 \) | \(58 = 69 - 11 \) | \(59 = 61 + 1 - \sqrt{9 }\) | \(60 = 61 - 1^{9 }\) |
\(61 = 1^{9} \cdot 61 \) | \(62 = 1^{9} + 61 \) | \(63 = 11 \cdot 6 - \sqrt{9 }\) | \(64 = ( 11 - 9 )^{6 }\) |
\(65 = 6 \cdot 9 + 11 \) | \(66 = ( 9 - 6 )! \cdot 11 \) | \(67 = 69 - 1 - 1 \) | \(68 = ( 69 - 1 ) \cdot 1 \) |
\(69 = 61 - 1 + 9 \) | \(70 = 61 \cdot 1 + 9 \) | \(71 = 61 + 1 + 9 \) | \(72 = ( 1 + 1 + 6 ) \cdot 9 \) |
\(73 = ( 1 + 1 )^{6} + 9 \) | \(74 = \sqrt{( 1 + 6 )! + 1} + \sqrt{9 }\) | \(75 = 91 - 16 \) | \(76 = \sqrt{16} \cdot 19 \) |
\(77 = \sqrt{( 1 + 6 )! + 1} + \sqrt{9 }!\) | \(78 = \frac{ 6! }{ 9 } - 1 - 1 \) | \(79 = ( \frac{ 6! }{ 9 } - 1 ) \cdot 1 \) | \(80 = 11 + 69 \) |
\(81 = 9^{1^{6} + 1 }\) | \(82 = 9^{\sqrt{\sqrt{16}}} + 1 \) | \(83 = ?\) | \(84 = 91 - 1 - 6 \) |
\(85 = 96 - 11 \) | \(86 = 91 + 1 - 6 \) | \(87 = 91 - \sqrt{16 }\) | \(88 = ?\) |
\(89 = 91 - \sqrt{\sqrt{16 }}\) | \(90 = 91 - 1^{6 }\) | \(91 = 1^{6} \cdot 91 \) | \(92 = 1^{6} + 91 \) |
\(93 = 11 \cdot 9 - 6 \) | \(94 = 96 - 1 - 1 \) | \(95 = \sqrt{16} + 91 \) | \(96 = 91 - 1 + 6 \) |
\(97 = 91 \cdot 1 + 6 \) | \(98 = 91 + 1 + 6 \) | \(99 = ( 6 + \sqrt{9} ) \cdot 11 \) | \(100 = ( 1 + 9 )^{\sqrt{\sqrt{16 }}}\) |