1169

\(1 = 1^{\sqrt{169 }}\) \(2 = \frac{ 16 }{ 9 - 1 }\) \(3 = 19 - 16 \) \(4 = 9 - ( 11 - 6 )\)
\(5 = 6 - 1^{19 }\) \(6 = ( 19 - 16 )!\) \(7 = 16 \cdot 1 - 9 \) \(8 = 11 + 6 - 9 \)
\(9 = 1^{16} \cdot 9 \) \(10 = 1^{16} + 9 \) \(11 = \sqrt{16 \cdot 9} - 1 \) \(12 = \sqrt{169} - 1 \)
\(13 = \sqrt{169} \cdot 1 \) \(14 = \sqrt{169} + 1 \) \(15 = \sqrt{196} + 1 \) \(16 = 1^{9} \cdot 16 \)
\(17 = 1^{9} + 16 \) \(18 = 19 - 1^{6 }\) \(19 = 1^{6} \cdot 19 \) \(20 = 1^{6} + 19 \)
\(21 = \sqrt{\sqrt{16}} + 19 \) \(22 = \frac{ 11 \cdot 6 }{ \sqrt{9 } }\) \(23 = \sqrt{16} + 19 \) \(24 = 16 - 1 + 9 \)
\(25 = 16 \cdot 1 + 9 \) \(26 = 11 + 6 + 9 \) \(27 = 11 \cdot \sqrt{9} - 6 \) \(28 = ( 1 + 6 ) \cdot ( 1 + \sqrt{9 } )\)
\(29 = 6 \cdot \sqrt{9} + 11 \) \(30 = 91 - 61 \) \(31 = \sqrt{961} \cdot 1 \) \(32 = \sqrt{961} + 1 \)
\(33 = ( 9 - 6 ) \cdot 11 \) \(34 = \sqrt{16}! + 1 + 9 \) \(35 = 16 + 19 \) \(36 = 6^{11 - 9 }\)
\(37 = \sqrt{16} \cdot 9 + 1 \) \(38 = \sqrt{\sqrt{16}} \cdot 19 \) \(39 = 11 \cdot \sqrt{9} + 6 \) \(40 = ( 1 + 9 ) \cdot \sqrt{16 }\)
\(41 = \frac{ ( 6 - 1 )! }{ \sqrt{9} } + 1 \) \(42 = 61 - 19 \) \(43 = 6 \cdot 9 - 11 \) \(44 = ( 6 - 1 ) \cdot 9 - 1 \)
\(45 = ( 11 - 6 ) \cdot 9 \) \(46 = ( 6 - 1 ) \cdot 9 + 1 \) \(47 = 16 \cdot \sqrt{9} - 1 \) \(48 = \frac{ 96 }{ 1 + 1 }\)
\(49 = 16 \cdot \sqrt{9} + 1 \) \(50 = ( 6 - 1 ) \cdot ( 1 + 9 )\) \(51 = 61 - 1 - 9 \) \(52 = 61 \cdot 1 - 9 \)
\(53 = 61 + 1 - 9 \) \(54 = ( 1 - 1 + 6 ) \cdot 9 \) \(55 = ( 1 + 1 )^{6} - 9 \) \(56 = 6 \cdot 9 + 1 + 1 \)
\(57 = 11 \cdot 6 - 9 \) \(58 = 69 - 11 \) \(59 = 61 + 1 - \sqrt{9 }\) \(60 = 61 - 1^{9 }\)
\(61 = 1^{9} \cdot 61 \) \(62 = 1^{9} + 61 \) \(63 = 11 \cdot 6 - \sqrt{9 }\) \(64 = ( 11 - 9 )^{6 }\)
\(65 = 6 \cdot 9 + 11 \) \(66 = ( 9 - 6 )! \cdot 11 \) \(67 = 69 - 1 - 1 \) \(68 = ( 69 - 1 ) \cdot 1 \)
\(69 = 61 - 1 + 9 \) \(70 = 61 \cdot 1 + 9 \) \(71 = 61 + 1 + 9 \) \(72 = ( 1 + 1 + 6 ) \cdot 9 \)
\(73 = ( 1 + 1 )^{6} + 9 \) \(74 = \sqrt{( 1 + 6 )! + 1} + \sqrt{9 }\) \(75 = 91 - 16 \) \(76 = \sqrt{16} \cdot 19 \)
\(77 = \sqrt{( 1 + 6 )! + 1} + \sqrt{9 }!\) \(78 = \frac{ 6! }{ 9 } - 1 - 1 \) \(79 = ( \frac{ 6! }{ 9 } - 1 ) \cdot 1 \) \(80 = 11 + 69 \)
\(81 = 9^{1^{6} + 1 }\) \(82 = 9^{\sqrt{\sqrt{16}}} + 1 \) \(83 = ?\) \(84 = 91 - 1 - 6 \)
\(85 = 96 - 11 \) \(86 = 91 + 1 - 6 \) \(87 = 91 - \sqrt{16 }\) \(88 = ?\)
\(89 = 91 - \sqrt{\sqrt{16 }}\) \(90 = 91 - 1^{6 }\) \(91 = 1^{6} \cdot 91 \) \(92 = 1^{6} + 91 \)
\(93 = 11 \cdot 9 - 6 \) \(94 = 96 - 1 - 1 \) \(95 = \sqrt{16} + 91 \) \(96 = 91 - 1 + 6 \)
\(97 = 91 \cdot 1 + 6 \) \(98 = 91 + 1 + 6 \) \(99 = ( 6 + \sqrt{9} ) \cdot 11 \) \(100 = ( 1 + 9 )^{\sqrt{\sqrt{16 }}}\)