\(1 = ( 1^{16} )^{8 }\) | \(2 = 18 - 16 \) | \(3 = 8 - ( 11 - 6 )\) | \(4 = \frac{ 18 }{ 6 } + 1 \) |
\(5 = 6 - 1^{18 }\) | \(6 = 1^{18} \cdot 6 \) | \(7 = 16 - \sqrt{81 }\) | \(8 = 1^{16} \cdot 8 \) |
\(9 = 11 + 6 - 8 \) | \(10 = 1^{6} + \sqrt{81 }\) | \(11 = 18 - 1 - 6 \) | \(12 = 18 \cdot 1 - 6 \) |
\(13 = \sqrt{161 + 8 }\) | \(14 = 18 - \sqrt{16 }\) | \(15 = 16 - 1^{8 }\) | \(16 = 1^{8} \cdot 16 \) |
\(17 = 1^{8} + 16 \) | \(18 = ( 11 - 8 ) \cdot 6 \) | \(19 = 1^{6} + 18 \) | \(20 = 81 - 61 \) |
\(21 = ( 1 + 6 ) \cdot \sqrt{\sqrt{81 }}\) | \(22 = \sqrt{16} + 18 \) | \(23 = 16 - 1 + 8 \) | \(24 = 16 \cdot 1 + 8 \) |
\(25 = 16 + \sqrt{81 }\) | \(26 = \sqrt{\sqrt{\sqrt{81}}^{6}} - 1 \) | \(27 = \sqrt{( 11 - 8 )^{6 }}\) | \(28 = ( 8 - 1 ) \cdot \sqrt{16 }\) |
\(29 = \sqrt{\frac{ ( 8 - 1 )! }{ 6 } + 1 }\) | \(30 = ( \frac{ 8 }{ 1 + 1 } )! + 6 \) | \(31 = \sqrt{16} \cdot 8 - 1 \) | \(32 = \sqrt{16} \cdot 1 \cdot 8 \) |
\(33 = \sqrt{16} \cdot 8 + 1 \) | \(34 = 16 + 18 \) | \(35 = ( 6 - 1 ) \cdot ( 8 - 1 )\) | \(36 = \sqrt{16 \cdot 81 }\) |
\(37 = 6 \cdot 8 - 11 \) | \(38 = \sqrt{\sqrt{6^{8}}} + 1 + 1 \) | \(39 = \frac{ 6! }{ 18 } - 1 \) | \(40 = ( 11 - 6 ) \cdot 8 \) |
\(41 = \sqrt{1681 }\) | \(42 = \sqrt{16}! + 18 \) | \(43 = 61 - 18 \) | \(44 = 6^{1 + 1} + 8 \) |
\(45 = ( 6 - 1 ) \cdot \sqrt{81 }\) | \(46 = 6 \cdot 8 - 1 - 1 \) | \(47 = ( 6 \cdot 8 - 1 ) \cdot 1 \) | \(48 = 16 \cdot \sqrt{\sqrt{81 }}\) |
\(49 = 1 \cdot 6 \cdot 8 + 1 \) | \(50 = 6 \cdot 8 + 1 + 1 \) | \(51 = ?\) | \(52 = 61 - \sqrt{81 }\) |
\(53 = 61 \cdot 1 - 8 \) | \(54 = 61 + 1 - 8 \) | \(55 = \sqrt{81} \cdot 6 + 1 \) | \(56 = ( 1 \cdot 1 + 6 ) \cdot 8 \) |
\(57 = 68 - 11 \) | \(58 = 11 \cdot 6 - 8 \) | \(59 = 6 \cdot 8 + 11 \) | \(60 = 61 - 1^{8 }\) |
\(61 = 1^{8} \cdot 61 \) | \(62 = 1^{8} + 61 \) | \(63 = ( 1 + 6 ) \cdot \sqrt{81 }\) | \(64 = 61 + \sqrt{\sqrt{81 }}\) |
\(65 = 81 - 16 \) | \(66 = 68 - 1 - 1 \) | \(67 = ( 68 - 1 ) \cdot 1 \) | \(68 = 61 - 1 + 8 \) |
\(69 = 61 \cdot 1 + 8 \) | \(70 = 61 + \sqrt{81 }\) | \(71 = \sqrt{( 8 - 1^{6} )! + 1 }\) | \(72 = \sqrt{16} \cdot 18 \) |
\(73 = ?\) | \(74 = 11 \cdot 6 + 8 \) | \(75 = 86 - 11 \) | \(76 = 81 + 1 - 6 \) |
\(77 = 81 - \sqrt{16 }\) | \(78 = ?\) | \(79 = 11 + 68 \) | \(80 = 81 - 1^{6 }\) |
\(81 = 1^{6} \cdot 81 \) | \(82 = 11 \cdot 8 - 6 \) | \(83 = \sqrt{\sqrt{16}} + 81 \) | \(84 = 86 - 1 - 1 \) |
\(85 = \sqrt{16} + 81 \) | \(86 = 81 - 1 + 6 \) | \(87 = 81 \cdot 1 + 6 \) | \(88 = 81 + 1 + 6 \) |
\(89 = ( \frac{ 6! }{ 8 } - 1 ) \cdot 1 \) | \(90 = ( 6 - 1 ) \cdot 18 \) | \(91 = 811 - 6 !\) | \(92 = \frac{ 6! }{ 8 } + 1 + 1 \) |
\(93 = ?\) | \(94 = 11 \cdot 8 + 6 \) | \(95 = ?\) | \(96 = 16 \cdot \sqrt{\sqrt{81 }}!\) |
\(97 = 11 + 86 \) | \(98 = ?\) | \(99 = ?\) | \(100 = ?\) |