\(1 = 17 - 16 \) | \(2 = 7 - ( 11 - 6 )\) | \(3 = \frac{ 11 + 7 }{ 6 }\) | \(4 = 6 - \sqrt{11 - 7 }\) |
\(5 = 6 - 1^{17 }\) | \(6 = 7 - 1^{16 }\) | \(7 = 1^{16} \cdot 7 \) | \(8 = 1^{16} + 7 \) |
\(9 = 6! - 711 \) | \(10 = 71 - 61 \) | \(11 = ( 7 - 6 ) \cdot 11 \) | \(12 = 11 - 6 + 7 \) |
\(13 = 17 - \sqrt{16 }\) | \(14 = ( 1^{6} + 1 ) \cdot 7 \) | \(15 = 16 - 1^{7 }\) | \(16 = 1^{7} \cdot 16 \) |
\(17 = 1^{7} + 16 \) | \(18 = 1^{6} + 17 \) | \(19 = \sqrt{\sqrt{16}} + 17 \) | \(20 = ( 1 + 1 ) \cdot 7 + 6 \) |
\(21 = \sqrt{16} + 17 \) | \(22 = 16 - 1 + 7 \) | \(23 = \frac{ 161 }{ 7 }\) | \(24 = 11 + 6 + 7 \) |
\(25 = 1^{7} + \sqrt{16 }!\) | \(26 = ( 1 + 1 ) \cdot ( 6 + 7 )\) | \(27 = \sqrt{16} \cdot 7 - 1 \) | \(28 = \sqrt{16} \cdot 1 \cdot 7 \) |
\(29 = \sqrt{16} \cdot 7 + 1 \) | \(30 = ( 11 - 7 )! + 6 \) | \(31 = 6 \cdot 7 - 11 \) | \(32 = ( 1 + 7 ) \cdot \sqrt{16 }\) |
\(33 = 16 + 17 \) | \(34 = \sqrt{\sqrt{16}} \cdot 17 \) | \(35 = ( 11 - 6 ) \cdot 7 \) | \(36 = 6^{\sqrt{11 - 7 }}\) |
\(37 = ( 7 - 1 ) \cdot 6 + 1 \) | \(38 = \frac{ 76 }{ 1 + 1 }\) | \(39 = ?\) | \(40 = \frac{ 6! }{ 11 + 7 }\) |
\(41 = \sqrt{16}! + 17 \) | \(42 = ( 1 - 1 + 6 ) \cdot 7 \) | \(43 = 6^{1 + 1} + 7 \) | \(44 = 61 - 17 \) |
\(45 = \frac{ ( 7 - 1 )! }{ 16 }\) | \(46 = ?\) | \(47 = 71 - \sqrt{16 }!\) | \(48 = ( 1 \cdot 1 + 7 ) \cdot 6 \) |
\(49 = ( 6 - 1 )! - 71 \) | \(50 = ( 1 + 6 ) \cdot 7 + 1 \) | \(51 = ?\) | \(52 = ?\) |
\(53 = 6 \cdot 7 + 11 \) | \(54 = 61 \cdot 1 - 7 \) | \(55 = 71 - 16 \) | \(56 = 67 - 11 \) |
\(57 = ( 1 + 1 )^{6} - 7 \) | \(58 = ?\) | \(59 = 11 \cdot 6 - 7 \) | \(60 = 61 - 1^{7 }\) |
\(61 = 1^{7} \cdot 61 \) | \(62 = 1^{7} + 61 \) | \(63 = ?\) | \(64 = 71 - 1 - 6 \) |
\(65 = 76 - 11 \) | \(66 = ( 67 - 1 ) \cdot 1 \) | \(67 = 71 - \sqrt{16 }\) | \(68 = \sqrt{16} \cdot 17 \) |
\(69 = 61 + 1 + 7 \) | \(70 = 71 - 1^{6 }\) | \(71 = 11 \cdot 7 - 6 \) | \(72 = 1^{6} + 71 \) |
\(73 = 11 \cdot 6 + 7 \) | \(74 = 76 - 1 - 1 \) | \(75 = \sqrt{16} + 71 \) | \(76 = 71 - 1 + 6 \) |
\(77 = 71 \cdot 1 + 6 \) | \(78 = 11 + 67 \) | \(79 = ?\) | \(80 = \frac{ 6! }{ 1 + 1 + 7 }\) |
\(81 = ?\) | \(82 = ?\) | \(83 = 11 \cdot 7 + 6 \) | \(84 = \frac{ 7! }{ 61 - 1 }\) |
\(85 = ( 6 - 1 ) \cdot 17 \) | \(86 = ?\) | \(87 = 11 + 76 \) | \(88 = ?\) |
\(89 = \frac{ 6! }{ 1 + 7 } - 1 \) | \(90 = \frac{ 6! }{ 1 \cdot 1 + 7 }\) | \(91 = \frac{ 6! }{ 1 + 7 } + 1 \) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = \sqrt{16}! + 71 \) | \(96 = ( 7 - 1 ) \cdot 16 \) |
\(97 = ?\) | \(98 = ?\) | \(99 = ?\) | \(100 = ?\) |