\(1 = 5! - 119 \) | \(2 = \sqrt{19 - 15 }\) | \(3 = 9 - ( 11 - 5 )\) | \(4 = 19 - 15 \) |
\(5 = 15 - 1 - 9 \) | \(6 = 15 \cdot 1 - 9 \) | \(7 = 11 + 5 - 9 \) | \(8 = 9 - 1^{15 }\) |
\(9 = 1^{15} \cdot 9 \) | \(10 = ( 11 - 9 ) \cdot 5 \) | \(11 = 15 - 1 - \sqrt{9 }\) | \(12 = \sqrt{( 11 + 5 ) \cdot 9 }\) |
\(13 = 19 - 1 - 5 \) | \(14 = \sqrt{191 + 5 }\) | \(15 = 11 - 5 + 9 \) | \(16 = 1^{9} + 15 \) |
\(17 = 15 - 1 + \sqrt{9 }\) | \(18 = 19 - 1^{5 }\) | \(19 = 1^{5} \cdot 19 \) | \(20 = 1^{5} + 19 \) |
\(21 = 5! - 11 \cdot 9 \) | \(22 = ( 5 - \sqrt{9} ) \cdot 11 \) | \(23 = 15 - 1 + 9 \) | \(24 = ( 19 - 15 )!\) |
\(25 = 11 + 5 + 9 \) | \(26 = 5 \cdot \sqrt{9} + 11 \) | \(27 = ( 5 - ( 1 + 1 ) ) \cdot 9 \) | \(28 = 11 \cdot \sqrt{9} - 5 \) |
\(29 = 5! - 91 \cdot 1 \) | \(30 = ( \sqrt{9} - 1 ) \cdot 15 \) | \(31 = ( \sqrt{9} - 1 )^{5} - 1 \) | \(32 = 51 - 19 \) |
\(33 = \sqrt{11 + 5}! + 9 \) | \(34 = 15 + 19 \) | \(35 = ( 9 - 5 )! + 11 \) | \(36 = \sqrt{11 + 5} \cdot 9 \) |
\(37 = ( 5 - 1 ) \cdot 9 + 1 \) | \(38 = 11 \cdot \sqrt{9} + 5 \) | \(39 = ( 9 - 1 ) \cdot 5 - 1 \) | \(40 = 91 - 51 \) |
\(41 = 51 - 1 - 9 \) | \(42 = 51 \cdot 1 - 9 \) | \(43 = 51 + 1 - 9 \) | \(44 = ( 9 - 5 ) \cdot 11 \) |
\(45 = 15 \cdot 1 \cdot \sqrt{9 }\) | \(46 = 11 \cdot 5 - 9 \) | \(47 = 51 - 1 - \sqrt{9 }\) | \(48 = 59 - 11 \) |
\(49 = 51 + 1 - \sqrt{9 }\) | \(50 = 51 - 1^{9 }\) | \(51 = 1^{9} \cdot 51 \) | \(52 = 1^{9} + 51 \) |
\(53 = 51 - 1 + \sqrt{9 }\) | \(54 = ( 11 - 5 ) \cdot 9 \) | \(55 = 51 + 1 + \sqrt{9 }\) | \(56 = 5 \cdot 9 + 11 \) |
\(57 = 59 - 1 - 1 \) | \(58 = ( 59 - 1 ) \cdot 1 \) | \(59 = 51 - 1 + 9 \) | \(60 = 51 \cdot 1 + 9 \) |
\(61 = 51 + 1 + 9 \) | \(62 = \sqrt{5 \cdot \sqrt{9}!!} + 1 + 1 \) | \(63 = ( 1 + 1 + 5 ) \cdot 9 \) | \(64 = 11 \cdot 5 + 9 \) |
\(65 = ( 5 - 1 )^{\sqrt{9}} + 1 \) | \(66 = \frac{ 11 \cdot \sqrt{9}!! }{ 5 ! }\) | \(67 = 91 - ( 5 - 1 )!\) | \(68 = ?\) |
\(69 = \frac{ 5! }{ 1 + 1 } + 9 \) | \(70 = 11 + 59 \) | \(71 = 191 - 5 !\) | \(72 = \frac{ ( 1 + 5 )! }{ 1 + 9 }\) |
\(73 = ( 5 - 1 )! \cdot \sqrt{9} + 1 \) | \(74 = ?\) | \(75 = ( \sqrt{9}! - 1 ) \cdot 15 \) | \(76 = 91 - 15 \) |
\(77 = \sqrt{1 + 5!} \cdot ( 1 + \sqrt{9 }! )\) | \(78 = ?\) | \(79 = \frac{ ( 1 + 5 )! }{ 9 } - 1 \) | \(80 = \frac{ ( 11 - 5 )! }{ 9 }\) |
\(81 = 9^{1^{5} + 1 }\) | \(82 = 9^{\sqrt{5 - 1}} + 1 \) | \(83 = ?\) | \(84 = 95 - 11 \) |
\(85 = 91 - 1 - 5 \) | \(86 = 91 \cdot 1 - 5 \) | \(87 = 91 + 1 - 5 \) | \(88 = ( 5 + \sqrt{9} ) \cdot 11 \) |
\(89 = 91 - \sqrt{5 - 1 }\) | \(90 = ( 19 - 1 ) \cdot 5 \) | \(91 = 1^{5} \cdot 91 \) | \(92 = 1^{5} + 91 \) |
\(93 = 95 - 1 - 1 \) | \(94 = 11 \cdot 9 - 5 \) | \(95 = 19 \cdot 1 \cdot 5 \) | \(96 = 19 \cdot 5 + 1 \) |
\(97 = 91 + 1 + 5 \) | \(98 = \sqrt{1 + 5!} \cdot 9 - 1 \) | \(99 = \sqrt{1 \cdot 1 + 5!} \cdot 9 \) | \(100 = ( 11 + 9 ) \cdot 5 \) |