\(1 = 7 - ( 11 - 5 )\) | \(2 = 17 - 15 \) | \(3 = \frac{ 51 }{ 17 }\) | \(4 = 5 - 1^{17 }\) |
\(5 = 1^{17} \cdot 5 \) | \(6 = ( \frac{ 51 }{ 17 } )!\) | \(7 = 1^{15} \cdot 7 \) | \(8 = \sqrt{75 - 11 }\) |
\(9 = 11 + 5 - 7 \) | \(10 = \sqrt{11 - 7} \cdot 5 \) | \(11 = 17 - 1 - 5 \) | \(12 = \sqrt{151 - 7 }\) |
\(13 = 11 - 5 + 7 \) | \(14 = 15 - 1^{7 }\) | \(15 = 1^{7} \cdot 15 \) | \(16 = 1^{7} + 15 \) |
\(17 = 1^{5} \cdot 17 \) | \(18 = 1^{5} + 17 \) | \(19 = ( 11 - 7 )! - 5 \) | \(20 = 71 - 51 \) |
\(21 = 15 - 1 + 7 \) | \(22 = ( 7 - 5 ) \cdot 11 \) | \(23 = 11 + 5 + 7 \) | \(24 = 5 \cdot 7 - 11 \) |
\(25 = 5^{\sqrt{11 - 7 }}\) | \(26 = \sqrt{\sqrt{5^{1 + 7}}} + 1 \) | \(27 = ( 5 - 1 ) \cdot 7 - 1 \) | \(28 = \sqrt{11 + 5} \cdot 7 \) |
\(29 = ( 11 - 7 )! + 5 \) | \(30 = \frac{ 5! }{ 11 - 7 }\) | \(31 = ( 7 - 1 ) \cdot 5 + 1 \) | \(32 = 15 + 17 \) |
\(33 = 5 \cdot 7 - 1 - 1 \) | \(34 = 51 - 17 \) | \(35 = ( 1 - 1 + 5 ) \cdot 7 \) | \(36 = 1 \cdot 5 \cdot 7 + 1 \) |
\(37 = 5 \cdot 7 + 1 + 1 \) | \(38 = ?\) | \(39 = ( 1 + 1 )^{5} + 7 \) | \(40 = ( 1 \cdot 1 + 7 ) \cdot 5 \) |
\(41 = ( 5 - 1 )! + 17 \) | \(42 = ( 11 - 5 ) \cdot 7 \) | \(43 = 51 - 1 - 7 \) | \(44 = 51 \cdot 1 - 7 \) |
\(45 = 51 + 1 - 7 \) | \(46 = 57 - 11 \) | \(47 = 71 - ( 5 - 1 )!\) | \(48 = 11 \cdot 5 - 7 \) |
\(49 = 5! - 71 \cdot 1 \) | \(50 = 51 - 1^{7 }\) | \(51 = 171 - 5 !\) | \(52 = 1^{7} + 51 \) |
\(53 = \frac{ 7! }{ 5! } + 11 \) | \(54 = 7^{1 + 1} + 5 \) | \(55 = 57 - 1 - 1 \) | \(56 = 71 - 15 \) |
\(57 = 51 - 1 + 7 \) | \(58 = 51 \cdot 1 + 7 \) | \(59 = 51 + 1 + 7 \) | \(60 = \frac{ 5! }{ \sqrt{11 - 7 } }\) |
\(61 = \sqrt{( 7 - 1 )! \cdot 5} + 1 \) | \(62 = 11 \cdot 5 + 7 \) | \(63 = ?\) | \(64 = 75 - 11 \) |
\(65 = 71 - 1 - 5 \) | \(66 = 71 \cdot 1 - 5 \) | \(67 = 71 + 1 - 5 \) | \(68 = 11 + 57 \) |
\(69 = 71 - \sqrt{5 - 1 }\) | \(70 = 71 - 1^{5 }\) | \(71 = 1^{5} \cdot 71 \) | \(72 = 11 \cdot 7 - 5 \) |
\(73 = \frac{ 511 }{ 7 }\) | \(74 = ( 75 - 1 ) \cdot 1 \) | \(75 = 71 - 1 + 5 \) | \(76 = 71 \cdot 1 + 5 \) |
\(77 = 71 + 1 + 5 \) | \(78 = \sqrt{1 + 5!} \cdot 7 + 1 \) | \(79 = ?\) | \(80 = ( 17 - 1 ) \cdot 5 \) |
\(81 = ?\) | \(82 = 11 \cdot 7 + 5 \) | \(83 = ?\) | \(84 = 17 \cdot 5 - 1 \) |
\(85 = 17 \cdot 1 \cdot 5 \) | \(86 = 11 + 75 \) | \(87 = ?\) | \(88 = \sqrt{1 + 5!} \cdot ( 1 + 7 )\) |
\(89 = ?\) | \(90 = ( 11 + 7 ) \cdot 5 \) | \(91 = ?\) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = ( 5 - 1 )! + 71 \) | \(96 = 5! - ( 11 - 7 )!\) |
\(97 = ?\) | \(98 = ( 15 - 1 ) \cdot 7 \) | \(99 = ?\) | \(100 = ?\) |