1155

\(1 = \frac{ 15 }{ 15 }\) \(2 = \frac{ 15 }{ 5 } - 1 \) \(3 = \frac{ 15 \cdot 1 }{ 5 }\) \(4 = 5 - 1^{15 }\)
\(5 = \frac{ 55 }{ 11 }\) \(6 = \sqrt{51 - 15 }\) \(7 = ( \frac{ 15 }{ 5 } )! + 1 \) \(8 = \frac{ 5! }{ 15 \cdot 1 }\)
\(9 = 15 - 1 - 5 \) \(10 = 11 - \frac{ 5 }{ 5 }\) \(11 = 11 - 5 + 5 \) \(12 = \frac{ 5 }{ 5 } + 11 \)
\(13 = \frac{ 5! }{ 5 } - 11 \) \(14 = 5 \cdot 5 - 11 \) \(15 = \sqrt{15 \cdot 15 }\) \(16 = 1^{5} + 15 \)
\(17 = \sqrt{5 - 1} + 15 \) \(18 = ( 5 - 1 )! - 1 - 5 \) \(19 = 15 - 1 + 5 \) \(20 = 15 \cdot 1 + 5 \)
\(21 = 11 + 5 + 5 \) \(22 = \frac{ 5! }{ 5 } - 1 - 1 \) \(23 = \frac{ 115 }{ 5 }\) \(24 = ( 5 - 1^{15 } )!\)
\(25 = 5^{1^{5} + 1 }\) \(26 = 1 \cdot 5 \cdot 5 + 1 \) \(27 = 51 - ( 5 - 1 )!\) \(28 = ( 5 - 1 )! - 1 + 5 \)
\(29 = ( 1 + 5 ) \cdot 5 - 1 \) \(30 = 15 + 15 \) \(31 = 151 - 5 !\) \(32 = ( 1^{5} + 1 )^{5 }\)
\(33 = \sqrt{5 - 1}^{5} + 1 \) \(34 = ?\) \(35 = \frac{ 5! }{ 5 } + 11 \) \(36 = 51 - 15 \)
\(37 = ( 1 + 1 )^{5} + 5 \) \(38 = ?\) \(39 = ( 5 - 1 )! + 15 \) \(40 = 51 - \sqrt{1 + 5 !}\)
\(41 = ?\) \(42 = \frac{ ( 1 + 1 + 5 )! }{ 5 ! }\) \(43 = ?\) \(44 = 55 - 11 \)
\(45 = 51 - 1 - 5 \) \(46 = 51 \cdot 1 - 5 \) \(47 = 51 + 1 - 5 \) \(48 = \frac{ ( 1 + 5 )! }{ 15 }\)
\(49 = 51 - \sqrt{5 - 1 }\) \(50 = 11 \cdot 5 - 5 \) \(51 = \sqrt{51 \cdot 51 }\) \(52 = 1^{5} + 51 \)
\(53 = 55 - 1 - 1 \) \(54 = ( 55 - 1 ) \cdot 1 \) \(55 = 51 - 1 + 5 \) \(56 = 51 \cdot 1 + 5 \)
\(57 = 51 + 1 + 5 \) \(58 = ?\) \(59 = \frac{ 5! }{ \sqrt{5 - 1} } - 1 \) \(60 = 11 \cdot 5 + 5 \)
\(61 = \frac{ 5! }{ \sqrt{5 - 1} } + 1 \) \(62 = \sqrt{1 + 5!} + 51 \) \(63 = ?\) \(64 = \sqrt{5 - 1}^{1 + 5 }\)
\(65 = 5! - 11 \cdot 5 \) \(66 = 11 + 55 \) \(67 = ?\) \(68 = 5! - ( 51 + 1 )\)
\(69 = 5! - 51 \cdot 1 \) \(70 = ( 15 - 1 ) \cdot 5 \) \(71 = \sqrt{( \sqrt{5 - 1} + 5 )! + 1 }\) \(72 = ?\)
\(73 = ?\) \(74 = 15 \cdot 5 - 1 \) \(75 = 15 \cdot 1 \cdot 5 \) \(76 = 15 \cdot 5 + 1 \)
\(77 = ?\) \(78 = ?\) \(79 = ?\) \(80 = ( 11 + 5 ) \cdot 5 \)
\(81 = ?\) \(82 = ?\) \(83 = ?\) \(84 = ?\)
\(85 = ?\) \(86 = ?\) \(87 = ?\) \(88 = 5! - ( 1 + 1 )^{5 }\)
\(89 = ?\) \(90 = ( 1 + 5 ) \cdot 15 \) \(91 = ?\) \(92 = ?\)
\(93 = ?\) \(94 = ?\) \(95 = 5! - 5^{1 + 1 }\) \(96 = ( 5 - 1 ) \cdot ( 5 - 1 )!\)
\(97 = 5! - ( ( 5 - 1 )! - 1 )\) \(98 = ?\) \(99 = ?\) \(100 = ( 5 + 5 )^{1 + 1 }\)