\(1 = ( 1^{14} )^{9 }\) | \(2 = 9 - ( 11 - 4 )\) | \(3 = 4 - 1^{19 }\) | \(4 = 11 - \sqrt{49 }\) |
\(5 = 19 - 14 \) | \(6 = 11 + 4 - 9 \) | \(7 = \sqrt{4} \cdot 9 - 11 \) | \(8 = ( 11 - 9 ) \cdot 4 \) |
\(9 = 1^{14} \cdot 9 \) | \(10 = 1^{14} + 9 \) | \(11 = \sqrt{119 + \sqrt{4 }}\) | \(12 = \sqrt{141 + \sqrt{9 }}\) |
\(13 = 14 - 1^{9 }\) | \(14 = 1^{9} \cdot 14 \) | \(15 = 1^{9} + 14 \) | \(16 = 11 - 4 + 9 \) |
\(17 = \sqrt{4 \cdot 9} + 11 \) | \(18 = 11 + \sqrt{49 }\) | \(19 = 1^{4} \cdot 19 \) | \(20 = 1^{4} + 19 \) |
\(21 = ( 11 - 4 ) \cdot \sqrt{9 }\) | \(22 = 41 - 19 \) | \(23 = 14 \cdot 1 + 9 \) | \(24 = 11 + 4 + 9 \) |
\(25 = 4 \cdot 9 - 11 \) | \(26 = 11 + 4! - 9 \) | \(27 = ( 4 - 1 \cdot 1 ) \cdot 9 \) | \(28 = ( \sqrt{9} - 1 ) \cdot 14 \) |
\(29 = 11 \cdot \sqrt{9} - 4 \) | \(30 = ( 4 - 1 ) \cdot ( 1 + 9 )\) | \(31 = 41 - 1 - 9 \) | \(32 = 41 \cdot 1 - 9 \) |
\(33 = 14 + 19 \) | \(34 = 4 \cdot 9 - 1 - 1 \) | \(35 = 11 \cdot 4 - 9 \) | \(36 = ( 19 - 1 ) \cdot \sqrt{4 }\) |
\(37 = 11 \cdot \sqrt{9} + 4 \) | \(38 = 49 - 11 \) | \(39 = ( 14 - 1 ) \cdot \sqrt{9 }\) | \(40 = 41 - 1^{9 }\) |
\(41 = 1^{9} \cdot 41 \) | \(42 = 1^{9} + 41 \) | \(43 = 14 \cdot \sqrt{9} + 1 \) | \(44 = 11 + 4! + 9 \) |
\(45 = ( 11 + 4 ) \cdot \sqrt{9 }\) | \(46 = \frac{ 91 + 1 }{ \sqrt{4 } }\) | \(47 = \frac{ 141 }{ \sqrt{9 } }\) | \(48 = ( 49 - 1 ) \cdot 1 \) |
\(49 = 41 - 1 + 9 \) | \(50 = 91 - 41 \) | \(51 = 41 + 1 + 9 \) | \(52 = ?\) |
\(53 = 11 \cdot 4 + 9 \) | \(54 = ( 1 + 1 + 4 ) \cdot 9 \) | \(55 = ( 9 - 4 ) \cdot 11 \) | \(56 = ( 11 + \sqrt{9} ) \cdot 4 \) |
\(57 = ( 4 - 1 ) \cdot 19 \) | \(58 = \sqrt{\sqrt{( 1 + 1 )^{4!}}} - \sqrt{9 }!\) | \(59 = \sqrt{( 1 + 4 ) \cdot \sqrt{9}!!} - 1 \) | \(60 = 11 + 49 \) |
\(61 = 4! \cdot \sqrt{9} - 11 \) | \(62 = 11 \cdot \sqrt{9}! - 4 \) | \(63 = ( 11 - 4 ) \cdot 9 \) | \(64 = ( 11 - \sqrt{9} )^{\sqrt{4 }}\) |
\(65 = ( 1 + \sqrt{9} )! + 41 \) | \(66 = \sqrt{4 \cdot 9} \cdot 11 \) | \(67 = 91 \cdot 1 - 4 !\) | \(68 = 91 + 1 - 4 !\) |
\(69 = ( 4! - 1 \cdot 1 ) \cdot \sqrt{9 }\) | \(70 = 9^{\sqrt{4}} - 11 \) | \(71 = \sqrt{( \sqrt{49} \cdot 1 )! + 1 }\) | \(72 = ( 19 - 1 ) \cdot 4 \) |
\(73 = ( 1 \cdot 4 )! \cdot \sqrt{9} + 1 \) | \(74 = 4! \cdot \sqrt{9} + 1 + 1 \) | \(75 = 19 \cdot 4 - 1 \) | \(76 = 19 \cdot 1 \cdot 4 \) |
\(77 = 91 - 14 \) | \(78 = ( 14 - 1 ) \cdot \sqrt{9 }!\) | \(79 = 9^{1 + 1} - \sqrt{4 }\) | \(80 = ( 11 + 9 ) \cdot 4 \) |
\(81 = ( 11 - \sqrt{4} ) \cdot 9 \) | \(82 = ( \sqrt{9} - 1 ) \cdot 41 \) | \(83 = 94 - 11 \) | \(84 = 14 \cdot 1 \cdot \sqrt{9 }!\) |
\(85 = 91 - ( 4 - 1 )!\) | \(86 = 91 - 1 - 4 \) | \(87 = 91 \cdot 1 - 4 \) | \(88 = 91 + 1 - 4 \) |
\(89 = 91 \cdot 1 - \sqrt{4 }\) | \(90 = 91 - 1^{4 }\) | \(91 = 1^{4} \cdot 91 \) | \(92 = 1^{4} + 91 \) |
\(93 = ( 94 - 1 ) \cdot 1 \) | \(94 = 91 - 1 + 4 \) | \(95 = 119 - 4 !\) | \(96 = 91 + 1 + 4 \) |
\(97 = 11 \cdot 9 - \sqrt{4 }\) | \(98 = ( 1 + 1 ) \cdot 49 \) | \(99 = \sqrt{11^{\sqrt{4}}} \cdot 9 \) | \(100 = ( 1 \cdot 1 + 9 )^{\sqrt{4 }}\) |