\(1 = \frac{ 11 - 4 }{ 7 }\) | \(2 = \frac{ 14 \cdot 1 }{ 7 }\) | \(3 = 17 - 14 \) | \(4 = 1^{17} \cdot 4 \) |
\(5 = 1^{17} + 4 \) | \(6 = ( 17 - 14 )!\) | \(7 = 1^{14} \cdot 7 \) | \(8 = 11 + 4 - 7 \) |
\(9 = \frac{ 11 + 7 }{ \sqrt{4 } }\) | \(10 = 4 - 1 \cdot 1 + 7 \) | \(11 = \sqrt{114 + 7 }\) | \(12 = 17 - 1 - 4 \) |
\(13 = 14 - 1^{7 }\) | \(14 = 11 - 4 + 7 \) | \(15 = 1^{7} + 14 \) | \(16 = ( 11 - 7 ) \cdot 4 \) |
\(17 = 4 \cdot 7 - 11 \) | \(18 = 1^{4} + 17 \) | \(19 = 17 \cdot 1 + \sqrt{4 }\) | \(20 = 14 - 1 + 7 \) |
\(21 = 14 \cdot 1 + 7 \) | \(22 = 11 + 4 + 7 \) | \(23 = 4! - 1^{17 }\) | \(24 = 41 - 17 \) |
\(25 = \sqrt{4} \cdot 7 + 11 \) | \(26 = 4 \cdot 7 - 1 - 1 \) | \(27 = ( 4 \cdot 7 - 1 ) \cdot 1 \) | \(28 = 11 + 4! - 7 \) |
\(29 = 11 \cdot \sqrt{4} + 7 \) | \(30 = 71 - 41 \) | \(31 = 14 + 17 \) | \(32 = ( 17 - 1 ) \cdot \sqrt{4 }\) |
\(33 = ( 7 - 4 ) \cdot 11 \) | \(34 = 41 \cdot 1 - 7 \) | \(35 = 41 + 1 - 7 \) | \(36 = 47 - 11 \) |
\(37 = 11 \cdot 4 - 7 \) | \(38 = 7^{\sqrt{4}} - 11 \) | \(39 = 4 \cdot 7 + 11 \) | \(40 = 41 - 1^{7 }\) |
\(41 = 1^{7} \cdot 41 \) | \(42 = 1^{7} + 41 \) | \(43 = ( 4 - 1 )! \cdot 7 + 1 \) | \(44 = ?\) |
\(45 = 47 - 1 - 1 \) | \(46 = ( 47 - 1 ) \cdot 1 \) | \(47 = 41 - 1 + 7 \) | \(48 = 41 \cdot 1 + 7 \) |
\(49 = ( 11 - 4 ) \cdot 7 \) | \(50 = 7^{1 \cdot \sqrt{4}} + 1 \) | \(51 = 11 \cdot 4 + 7 \) | \(52 = ?\) |
\(53 = 11 \cdot 7 - 4 !\) | \(54 = ?\) | \(55 = ( 7 - \sqrt{4} ) \cdot 11 \) | \(56 = ( 1 + 1 ) \cdot 4 \cdot 7 \) |
\(57 = 71 - 14 \) | \(58 = 11 + 47 \) | \(59 = ?\) | \(60 = 7^{\sqrt{4}} + 11 \) |
\(61 = ?\) | \(62 = ( 1 + 1 ) \cdot ( 4! + 7 )\) | \(63 = 74 - 11 \) | \(64 = ( 17 - 1 ) \cdot 4 \) |
\(65 = 71 - ( 4 - 1 )!\) | \(66 = 71 - 1 - 4 \) | \(67 = 17 \cdot 4 - 1 \) | \(68 = 17 \cdot 1 \cdot 4 \) |
\(69 = 17 \cdot 4 + 1 \) | \(70 = 71 - 1^{4 }\) | \(71 = 1^{4} \cdot 71 \) | \(72 = ( 11 + 7 ) \cdot 4 \) |
\(73 = 11 \cdot 7 - 4 \) | \(74 = 71 - 1 + 4 \) | \(75 = 71 \cdot 1 + 4 \) | \(76 = 71 + 1 + 4 \) |
\(77 = ( 4 - 1 )! + 71 \) | \(78 = ?\) | \(79 = 11 \cdot 7 + \sqrt{4 }\) | \(80 = ?\) |
\(81 = 11 \cdot 7 + 4 \) | \(82 = ?\) | \(83 = ?\) | \(84 = ( 7 - 1 ) \cdot 14 \) |
\(85 = 11 + 74 \) | \(86 = ?\) | \(87 = ?\) | \(88 = ?\) |
\(89 = ?\) | \(90 = \frac{ ( 4 - 1 )!! }{ 1 + 7 }\) | \(91 = ( 14 - 1 ) \cdot 7 \) | \(92 = ?\) |
\(93 = 117 - 4 !\) | \(94 = ( 1 + 1 ) \cdot 47 \) | \(95 = 71 \cdot 1 + 4 !\) | \(96 = ( 11 - 7 ) \cdot 4 !\) |
\(97 = 14 \cdot 7 - 1 \) | \(98 = 14 \cdot 1 \cdot 7 \) | \(99 = 14 \cdot 7 + 1 \) | \(100 = ?\) |