\(1 = \frac{ 14 }{ 14 }\) | \(2 = \sqrt{\frac{ 44 }{ 11 }}\) | \(3 = 11 - 4 - 4 \) | \(4 = \frac{ 44 }{ 11 }\) |
\(5 = 4 \cdot 4 - 11 \) | \(6 = ( 11 - 4 - 4 )!\) | \(7 = 11 - \sqrt{4 \cdot 4 }\) | \(8 = \frac{ 14 }{ \sqrt{4} } + 1 \) |
\(9 = 14 - 1 - 4 \) | \(10 = 11 - \frac{ 4 }{ 4 }\) | \(11 = \sqrt{144} - 1 \) | \(12 = \sqrt{144} \cdot 1 \) |
\(13 = \sqrt{144} + 1 \) | \(14 = \sqrt{14 \cdot 14 }\) | \(15 = 1^{4} + 14 \) | \(16 = 14 \cdot 1 + \sqrt{4 }\) |
\(17 = 14 - 1 + 4 \) | \(18 = 14 \cdot 1 + 4 \) | \(19 = 11 + 4 + 4 \) | \(20 = \sqrt{441} - 1 \) |
\(21 = \sqrt{441} \cdot 1 \) | \(22 = \sqrt{441} + 1 \) | \(23 = 4! - 1^{14 }\) | \(24 = ( \frac{ 44 }{ 11 } )!\) |
\(25 = 1^{14} + 4 !\) | \(26 = 11 \cdot \sqrt{4} + 4 \) | \(27 = 41 - 14 \) | \(28 = 14 + 14 \) |
\(29 = 14 \cdot \sqrt{4} + 1 \) | \(30 = ( 11 + 4 ) \cdot \sqrt{4 }\) | \(31 = 11 - 4 + 4 !\) | \(32 = ( 1 + 1 ) \cdot 4 \cdot 4 \) |
\(33 = 44 - 11 \) | \(34 = ?\) | \(35 = 41 - ( 4 - 1 )!\) | \(36 = 41 - 1 - 4 \) |
\(37 = 41 \cdot 1 - 4 \) | \(38 = 41 + 1 - 4 \) | \(39 = 11 + 4 + 4 !\) | \(40 = 11 \cdot 4 - 4 \) |
\(41 = \sqrt{41 \cdot 41 }\) | \(42 = ( 4 - 1 ) \cdot 14 \) | \(43 = ( 44 - 1 ) \cdot 1 \) | \(44 = 41 - 1 + 4 \) |
\(45 = 41 \cdot 1 + 4 \) | \(46 = 41 + 1 + 4 \) | \(47 = ( 4 - 1 )! + 41 \) | \(48 = 11 \cdot 4 + 4 \) |
\(49 = ( 11 - 4 )^{\sqrt{4 }}\) | \(50 = ( 1 \cdot 1 + 4! ) \cdot \sqrt{4 }\) | \(51 = ( 1 + 4! ) \cdot \sqrt{4} + 1 \) | \(52 = ( 14 - 1 ) \cdot 4 \) |
\(53 = \sqrt{\sqrt{\sqrt{4}^{4!}}} - 11 \) | \(54 = ?\) | \(55 = 11 + 44 \) | \(56 = 14 \cdot 1 \cdot 4 \) |
\(57 = \frac{ 114 }{ \sqrt{4 } }\) | \(58 = ?\) | \(59 = 11 + 4! + 4 !\) | \(60 = ( 11 + 4 ) \cdot 4 \) |
\(61 = \frac{ ( 1 + 4 )! }{ \sqrt{4} } + 1 \) | \(62 = \sqrt{\sqrt{( 1 + 1 )^{4!}}} - \sqrt{4 }\) | \(63 = 4^{4 - 1} - 1 \) | \(64 = 41 - 1 + 4 !\) |
\(65 = 41 \cdot 1 + 4 !\) | \(66 = \frac{ 11 \cdot 4! }{ 4 }\) | \(67 = ?\) | \(68 = 11 \cdot 4 + 4 !\) |
\(69 = ( 4 - 1 ) \cdot ( 4! - 1 )\) | \(70 = ( 1 + 4 ) \cdot 14 \) | \(71 = ( 4 - 1 ) \cdot 4! - 1 \) | \(72 = ( 4 - 1 \cdot 1 ) \cdot 4 !\) |
\(73 = ( 4 - 1 ) \cdot 4! + 1 \) | \(74 = ?\) | \(75 = ( 4 - 1 ) \cdot ( 1 + 4 ! )\) | \(76 = ?\) |
\(77 = ?\) | \(78 = ?\) | \(79 = ( 1 + 4 )! - 41 \) | \(80 = ( 41 - 1 ) \cdot \sqrt{4 }\) |
\(81 = 41 \cdot \sqrt{4} - 1 \) | \(82 = 41 + 41 \) | \(83 = 41 \cdot \sqrt{4} + 1 \) | \(84 = ( 4 - 1 )! \cdot 14 \) |
\(85 = 4 \cdot 4! - 11 \) | \(86 = ?\) | \(87 = ?\) | \(88 = ( 4 + 4 ) \cdot 11 \) |
\(89 = ?\) | \(90 = 114 - 4 !\) | \(91 = ( 4! - 1 ) \cdot 4 - 1 \) | \(92 = ( 4! - 1 \cdot 1 ) \cdot 4 \) |
\(93 = ( 4! - 1 ) \cdot 4 + 1 \) | \(94 = 4 \cdot 4! - 1 - 1 \) | \(95 = ( 4 \cdot 4! - 1 ) \cdot 1 \) | \(96 = ( 1 - 1 + 4 ) \cdot 4 !\) |
\(97 = 11^{\sqrt{4}} - 4 !\) | \(98 = 4 \cdot 4! + 1 + 1 \) | \(99 = ( 1 + 4! ) \cdot 4 - 1 \) | \(100 = ( 1 \cdot 1 + 4! ) \cdot 4 \) |