\(1 = 1^{\sqrt{361 }}\) | \(2 = 11 - 3 - 6 \) | \(3 = 16 - 13 \) | \(4 = 1^{16} + 3 \) |
\(5 = 11 - \sqrt{36 }\) | \(6 = ( 16 - 13 )!\) | \(7 = 3 \cdot 6 - 11 \) | \(8 = 11 + 3 - 6 \) |
\(9 = 13 - \sqrt{16 }\) | \(10 = 11 - \frac{ 3! }{ 6 }\) | \(11 = 13 - \sqrt{\sqrt{16 }}\) | \(12 = 13 - 1^{6 }\) |
\(13 = \frac{ 6 }{ 3 } + 11 \) | \(14 = 11 - 3 + 6 \) | \(15 = 31 - 16 \) | \(16 = 1^{3} \cdot 16 \) |
\(17 = 13 + \sqrt{16 }\) | \(18 = \sqrt{361} - 1 \) | \(19 = \sqrt{361} \cdot 1 \) | \(20 = \sqrt{361} + 1 \) |
\(21 = 16 - 1 + 3 !\) | \(22 = \frac{ 11 \cdot 6 }{ 3 }\) | \(23 = 11 + 3! + 6 \) | \(24 = 31 - 1 - 6 \) |
\(25 = 36 - 11 \) | \(26 = 31 + 1 - 6 \) | \(27 = 31 - \sqrt{16 }\) | \(28 = ( 1 + 3 ) \cdot ( 1 + 6 )\) |
\(29 = 13 + 16 \) | \(30 = 61 - 31 \) | \(31 = 1^{6} \cdot 31 \) | \(32 = ( 3 - 1 ) \cdot 16 \) |
\(33 = ( 6 - 3 ) \cdot 11 \) | \(34 = 36 - 1 - 1 \) | \(35 = \sqrt{16} + 31 \) | \(36 = 31 - 1 + 6 \) |
\(37 = 31 \cdot 1 + 6 \) | \(38 = 31 + 1 + 6 \) | \(39 = 11 \cdot 3 + 6 \) | \(40 = \frac{ ( 11 - 6 )! }{ 3 }\) |
\(41 = \frac{ ( 6 - 1 )! }{ 3 } + 1 \) | \(42 = ( 1 \cdot 1 + 3! ) \cdot 6 \) | \(43 = ( 1 + 3! ) \cdot 6 + 1 \) | \(44 = \frac{ 3!! }{ 16 } - 1 \) |
\(45 = ( 16 - 1 ) \cdot 3 \) | \(46 = \frac{ 3!! }{ 16 } + 1 \) | \(47 = 11 + 36 \) | \(48 = 61 - 13 \) |
\(49 = 16 \cdot 3 + 1 \) | \(50 = ?\) | \(51 = ( 11 + 6 ) \cdot 3 \) | \(52 = 63 - 11 \) |
\(53 = ?\) | \(54 = 61 - 1 - 3 !\) | \(55 = \sqrt{16}! + 31 \) | \(56 = 61 + 1 - 3 !\) |
\(57 = 61 - 1 - 3 \) | \(58 = 61 \cdot 1 - 3 \) | \(59 = 61 + 1 - 3 \) | \(60 = 61 - 1^{3 }\) |
\(61 = 1^{3} \cdot 61 \) | \(62 = 1^{3} + 61 \) | \(63 = 11 \cdot 6 - 3 \) | \(64 = ( 1 + 3 ) \cdot 16 \) |
\(65 = ( 6 - 1 ) \cdot 13 \) | \(66 = 11 \cdot \sqrt{36 }\) | \(67 = 61 \cdot 1 + 3 !\) | \(68 = 61 + 1 + 3 !\) |
\(69 = 11 \cdot 6 + 3 \) | \(70 = ( 1 + 1 )^{3!} + 6 \) | \(71 = \sqrt{( 13 - 6 )! + 1 }\) | \(72 = ( 13 - 1 ) \cdot 6 \) |
\(73 = \sqrt{16}! \cdot 3 + 1 \) | \(74 = 11 + 63 \) | \(75 = ( \sqrt{16}! + 1 ) \cdot 3 \) | \(76 = ?\) |
\(77 = 13 \cdot 6 - 1 \) | \(78 = 13 \cdot 1 \cdot 6 \) | \(79 = 13 \cdot 6 + 1 \) | \(80 = 3^{\sqrt{16}} - 1 \) |
\(81 = 3^{\sqrt{16} \cdot 1 }\) | \(82 = 3^{\sqrt{16}} + 1 \) | \(83 = ?\) | \(84 = ( 11 + 3 ) \cdot 6 \) |
\(85 = ( 1 + 3 )! + 61 \) | \(86 = ?\) | \(87 = ?\) | \(88 = ?\) |
\(89 = ( 6 - 1 )! - 31 \) | \(90 = \frac{ 6! }{ 11 - 3 }\) | \(91 = ( 1 + 6 ) \cdot 13 \) | \(92 = 31 + 61 \) |
\(93 = ?\) | \(94 = ?\) | \(95 = 16 \cdot 3! - 1 \) | \(96 = 16 \cdot 1 \cdot 3 !\) |
\(97 = 16 \cdot 3! + 1 \) | \(98 = ?\) | \(99 = ( 3 + 6 ) \cdot 11 \) | \(100 = ?\) |