\(1 = \frac{ 11 - 2 }{ 9 }\) | \(2 = 21 - 19 \) | \(3 = 12 \cdot 1 - 9 \) | \(4 = 11 + 2 - 9 \) |
\(5 = 11 - 2 \cdot \sqrt{9 }\) | \(6 = 9 - \sqrt{11 - 2 }\) | \(7 = 19 - 12 \) | \(8 = 9 - 1^{12 }\) |
\(9 = \sqrt{92 - 11 }\) | \(10 = \frac{ 11 + 9 }{ 2 }\) | \(11 = \sqrt{112 + 9 }\) | \(12 = 1^{9} \cdot 12 \) |
\(13 = 11 \cdot 2 - 9 \) | \(14 = \sqrt{121} + \sqrt{9 }\) | \(15 = 12 \cdot 1 + \sqrt{9 }\) | \(16 = 19 - 1 - 2 \) |
\(17 = 19 \cdot 1 - 2 \) | \(18 = 29 - 11 \) | \(19 = ( 2 - 1 ) \cdot 19 \) | \(20 = \sqrt{121} + 9 \) |
\(21 = 12 \cdot 1 + 9 \) | \(22 = 11 + 2 + 9 \) | \(23 = 21 - 1 + \sqrt{9 }\) | \(24 = ( 11 + 2 - 9 )!\) |
\(25 = 11 \cdot 2 + \sqrt{9 }\) | \(26 = ( 1 + 2 ) \cdot 9 - 1 \) | \(27 = 29 - 1 - 1 \) | \(28 = ( 29 - 1 ) \cdot 1 \) |
\(29 = 2 \cdot 9 + 11 \) | \(30 = 21 \cdot 1 + 9 \) | \(31 = 12 + 19 \) | \(32 = 2^{11 - \sqrt{9 }!}\) |
\(33 = \sqrt{121 \cdot 9 }\) | \(34 = ( 11 + \sqrt{9}! ) \cdot 2 \) | \(35 = 11 \cdot \sqrt{9} + 2 \) | \(36 = ( 19 - 1 ) \cdot 2 \) |
\(37 = 19 \cdot 2 - 1 \) | \(38 = 19 \cdot 1 \cdot 2 \) | \(39 = 19 \cdot 2 + 1 \) | \(40 = 11 + 29 \) |
\(41 = ?\) | \(42 = ( \sqrt{9} - 1 ) \cdot 21 \) | \(43 = ?\) | \(44 = ( \sqrt{9}! - 2 ) \cdot 11 \) |
\(45 = \frac{ 91 - 1 }{ 2 }\) | \(46 = \frac{ 91 + 1 }{ 2 }\) | \(47 = \sqrt{9}!^{2} + 11 \) | \(48 = ( 1 + \sqrt{9} ) \cdot 12 \) |
\(49 = ( 9 - ( 1 + 1 ) )^{2 }\) | \(50 = ( ( 1 + \sqrt{9} )! + 1 ) \cdot 2 \) | \(51 = ?\) | \(52 = ?\) |
\(53 = 2^{\sqrt{9}!} - 11 \) | \(54 = \sqrt{11 - 2}! \cdot 9 \) | \(55 = ( 2 + \sqrt{9} ) \cdot 11 \) | \(56 = \frac{ ( 9 - 1 )! }{ ( 1 + 2 )!! }\) |
\(57 = ( 1 + 2 ) \cdot 19 \) | \(58 = ( 1 + 1 ) \cdot 29 \) | \(59 = \frac{ \sqrt{9}!! }{ 12 } - 1 \) | \(60 = ( 21 - 1 ) \cdot \sqrt{9 }\) |
\(61 = \frac{ \sqrt{9}!! }{ 12 } + 1 \) | \(62 = 21 \cdot \sqrt{9} - 1 \) | \(63 = 21 \cdot 1 \cdot \sqrt{9 }\) | \(64 = ( 11 - \sqrt{9} )^{2 }\) |
\(65 = ( 9 - 1 )^{2} + 1 \) | \(66 = 11 \cdot 2 \cdot \sqrt{9 }\) | \(67 = ?\) | \(68 = 11 \cdot \sqrt{9}! + 2 \) |
\(69 = \sqrt{( 1 + \sqrt{9}! )! + 1} - 2 \) | \(70 = 91 - 21 \) | \(71 = 12 \cdot \sqrt{9}! - 1 \) | \(72 = 12 \cdot 1 \cdot \sqrt{9 }!\) |
\(73 = 12 \cdot \sqrt{9}! + 1 \) | \(74 = ?\) | \(75 = 2^{\sqrt{9}!} + 11 \) | \(76 = ?\) |
\(77 = ( 9 - 2 ) \cdot 11 \) | \(78 = ( 11 + 2 ) \cdot \sqrt{9 }!\) | \(79 = 91 - 12 \) | \(80 = ( 9^{2} - 1 ) \cdot 1 \) |
\(81 = 92 - 11 \) | \(82 = 9^{1 \cdot 2} + 1 \) | \(83 = 9^{1 + 1} + 2 \) | \(84 = ( 1 + \sqrt{9} ) \cdot 21 \) |
\(85 = 91 - ( 1 + 2 )!\) | \(86 = ?\) | \(87 = ?\) | \(88 = 91 - 1 - 2 \) |
\(89 = 91 \cdot 1 - 2 \) | \(90 = 91 + 1 - 2 \) | \(91 = ( 2 - 1 ) \cdot 91 \) | \(92 = 9^{2} + 11 \) |
\(93 = 91 \cdot 1 + 2 \) | \(94 = 91 + 1 + 2 \) | \(95 = ?\) | \(96 = ( 9 - 1 ) \cdot 12 \) |
\(97 = 11 \cdot 9 - 2 \) | \(98 = ?\) | \(99 = \sqrt{121} \cdot 9 \) | \(100 = ( 1 \cdot 1 + 9 )^{2 }\) |