1128

\(1 = 11 - 2 - 8 \) \(2 = 1^{18} \cdot 2 \) \(3 = 21 - 18 \) \(4 = 12 \cdot 1 - 8 \)
\(5 = 11 + 2 - 8 \) \(6 = 18 - 12 \) \(7 = 11 - \frac{ 8 }{ 2 }\) \(8 = 2^{11 - 8 }\)
\(9 = ( 11 - 8 )^{2 }\) \(10 = \frac{ 18 }{ 2 } + 1 \) \(11 = 12 - 1^{8 }\) \(12 = 21 - \sqrt{81 }\)
\(13 = 1^{8} + 12 \) \(14 = \frac{ 112 }{ 8 }\) \(15 = \frac{ 8 }{ 2 } + 11 \) \(16 = 18 \cdot 1 - 2 \)
\(17 = 28 - 11 \) \(18 = ( 2 - 1 ) \cdot 18 \) \(19 = \sqrt{121} + 8 \) \(20 = 12 \cdot 1 + 8 \)
\(21 = 12 + \sqrt{81 }\) \(22 = 1^{8} + 21 \) \(23 = ( 12 - 8 )! - 1 \) \(24 = 21 + \sqrt{\sqrt{81 }}\)
\(25 = ( 12 - 8 )! + 1 \) \(26 = 28 - 1 - 1 \) \(27 = 2 \cdot 8 + 11 \) \(28 = 21 - 1 + 8 \)
\(29 = 21 \cdot 1 + 8 \) \(30 = 12 + 18 \) \(31 = ?\) \(32 = ( 1 + 1 + 2 ) \cdot 8 \)
\(33 = ?\) \(34 = ( 18 - 1 ) \cdot 2 \) \(35 = 18 \cdot 2 - 1 \) \(36 = 18 \cdot 1 \cdot 2 \)
\(37 = 18 \cdot 2 + 1 \) \(38 = ( 11 + 8 ) \cdot 2 \) \(39 = 11 + 28 \) \(40 = \frac{ 81 - 1 }{ 2 }\)
\(41 = \frac{ 81 + 1 }{ 2 }\) \(42 = ( 1 + 2 )! \cdot ( 8 - 1 )\) \(43 = ?\) \(44 = \frac{ 11 \cdot 8 }{ 2 }\)
\(45 = ?\) \(46 = ?\) \(47 = ( 1 + 2 )! \cdot 8 - 1 \) \(48 = ( 8 - 1 )^{2} - 1 \)
\(49 = ( 8 - 1 \cdot 1 )^{2 }\) \(50 = ( 8 - 1 )^{2} + 1 \) \(51 = ?\) \(52 = ?\)
\(53 = 8^{2} - 11 \) \(54 = ( 1 + 2 ) \cdot 18 \) \(55 = \frac{ 8! }{ ( 1 + 2 )!! } - 1 \) \(56 = ( 1 + 1 ) \cdot 28 \)
\(57 = \frac{ 8! }{ ( 1 + 2 )!! } + 1 \) \(58 = ?\) \(59 = \frac{ 118 }{ 2 }\) \(60 = 81 - 21 \)
\(61 = ?\) \(62 = 8^{1 + 1} - 2 \) \(63 = 21 \cdot \sqrt{\sqrt{81 }}\) \(64 = 2^{( 11 - 8 )!}\)
\(65 = 8^{1 \cdot 2} + 1 \) \(66 = ( 8 - 2 ) \cdot 11 \) \(67 = ?\) \(68 = ?\)
\(69 = 81 - 12 \) \(70 = ?\) \(71 = 82 - 11 \) \(72 = ( 11 - 2 ) \cdot 8 \)
\(73 = \sqrt{( 8 - 1 )! + 1} + 2 \) \(74 = ?\) \(75 = 8^{2} + 11 \) \(76 = ?\)
\(77 = ?\) \(78 = 81 - 1 - 2 \) \(79 = 81 \cdot 1 - 2 \) \(80 = 81 + 1 - 2 \)
\(81 = ( 2 - 1 ) \cdot 81 \) \(82 = 81 - 1 + 2 \) \(83 = 81 \cdot 1 + 2 \) \(84 = ( 8 - 1 ) \cdot 12 \)
\(85 = ?\) \(86 = 11 \cdot 8 - 2 \) \(87 = ( 1 + 2 )! + 81 \) \(88 = \sqrt{121} \cdot 8 \)
\(89 = \frac{ ( 1 + 2 )!! }{ 8 } - 1 \) \(90 = 11 \cdot 8 + 2 \) \(91 = \frac{ ( 1 + 2 )!! }{ 8 } + 1 \) \(92 = ?\)
\(93 = 11 + 82 \) \(94 = ?\) \(95 = 12 \cdot 8 - 1 \) \(96 = 12 \cdot 1 \cdot 8 \)
\(97 = 12 \cdot 8 + 1 \) \(98 = ?\) \(99 = ?\) \(100 = ( \sqrt{81} + 1 )^{2 }\)