\(1 = \frac{ 12 }{ 12 }\) | \(2 = \frac{ 22 }{ 11 }\) | \(3 = \sqrt{21 - 12 }\) | \(4 = \frac{ 12 }{ 1 + 2 }\) |
\(5 = \frac{ 12 }{ 2 } - 1 \) | \(6 = \frac{ 12 \cdot 1 }{ 2 }\) | \(7 = 11 - 2 - 2 \) | \(8 = 2^{\sqrt{11 - 2 }}\) |
\(9 = 21 - 12 \) | \(10 = 11 - \frac{ 2 }{ 2 }\) | \(11 = 22 - 11 \) | \(12 = \sqrt{12 \cdot 12 }\) |
\(13 = \sqrt{121} + 2 \) | \(14 = 12 \cdot 1 + 2 \) | \(15 = 11 + 2 + 2 \) | \(16 = ( 1 + 1 + 2 )^{2 }\) |
\(17 = ?\) | \(18 = ( 11 - 2 ) \cdot 2 \) | \(19 = 21 \cdot 1 - 2 \) | \(20 = 11 \cdot 2 - 2 \) |
\(21 = \sqrt{21 \cdot 21 }\) | \(22 = \sqrt{121} \cdot 2 \) | \(23 = 12 \cdot 2 - 1 \) | \(24 = 12 + 12 \) |
\(25 = 12 \cdot 2 + 1 \) | \(26 = ( 11 + 2 ) \cdot 2 \) | \(27 = ( 1 + 2 )! + 21 \) | \(28 = ?\) |
\(29 = ?\) | \(30 = ?\) | \(31 = ?\) | \(32 = \sqrt{\frac{ 2^{11} }{ 2 }}\) |
\(33 = 11 + 22 \) | \(34 = ?\) | \(35 = ( 2 + 2 )! + 11 \) | \(36 = ( 1 + 2 ) \cdot 12 \) |
\(37 = ( 1 + 2 )!^{2} + 1 \) | \(38 = ?\) | \(39 = ?\) | \(40 = ( 21 - 1 ) \cdot 2 \) |
\(41 = 21 \cdot 2 - 1 \) | \(42 = 21 + 21 \) | \(43 = 21 \cdot 2 + 1 \) | \(44 = 11 \cdot 2 \cdot 2 \) |
\(45 = ?\) | \(46 = ?\) | \(47 = ?\) | \(48 = ( 1 + 1 + 2 )! \cdot 2 \) |
\(49 = ( ( 1 + 2 )! + 1 )^{2 }\) | \(50 = ?\) | \(51 = ?\) | \(52 = ?\) |
\(53 = ?\) | \(54 = ?\) | \(55 = ?\) | \(56 = \frac{ 112 }{ 2 }\) |
\(57 = ?\) | \(58 = ?\) | \(59 = ?\) | \(60 = \frac{ ( 1 + 2 )!! }{ 12 }\) |
\(61 = ?\) | \(62 = ?\) | \(63 = ( 1 + 2 ) \cdot 21 \) | \(64 = \sqrt{2^{11} \cdot 2 }\) |
\(65 = \sqrt{2^{12}} + 1 \) | \(66 = ?\) | \(67 = ?\) | \(68 = ?\) |
\(69 = ?\) | \(70 = ?\) | \(71 = ?\) | \(72 = ( 1 + 2 )! \cdot 12 \) |
\(73 = ?\) | \(74 = ?\) | \(75 = ?\) | \(76 = ?\) |
\(77 = ?\) | \(78 = ?\) | \(79 = ?\) | \(80 = ?\) |
\(81 = ( 11 - 2 )^{2 }\) | \(82 = ?\) | \(83 = ?\) | \(84 = ?\) |
\(85 = ?\) | \(86 = ?\) | \(87 = ?\) | \(88 = ?\) |
\(89 = ?\) | \(90 = ?\) | \(91 = ?\) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = ?\) | \(96 = ?\) |
\(97 = ?\) | \(98 = ?\) | \(99 = ?\) | \(100 = ?\) |