\(1 = ( 779 \cdot 0 )!\) | \(2 = \sqrt{9} - 77^{0 }\) | \(3 = \sqrt{79 - 70 }\) | \(4 = 77^{0} + \sqrt{9 }\) |
\(5 = 0 + 7 + 7 - 9 \) | \(6 = 7 - 79^{0 }\) | \(7 = \frac{ 70 - 7 }{ 9 }\) | \(8 = 9 - 77^{0 }\) |
\(9 = 79 - 70 \) | \(10 = 77^{0} + 9 \) | \(11 = \frac{ 7 }{ 7 } + 0! + 9 \) | \(12 = ( 7 - 0! ) \cdot ( 9 - 7 )\) |
\(13 = 90 - 77 \) | \(14 = \frac{ 97 + 0! }{ 7 }\) | \(15 = 7 - 7^{0} + 9 \) | \(16 = 0 \cdot 7 + 7 + 9 \) |
\(17 = 7^{0} + 7 + 9 \) | \(18 = ( \frac{ 7 }{ 7 } + 0! ) \cdot 9 \) | \(19 = \frac{ 70 }{ 7 } + 9 \) | \(20 = 7 \cdot \sqrt{9} - 7^{0 }\) |
\(21 = \frac{ 70 - 7 }{ \sqrt{9 } }\) | \(22 = 7 - 0! + 7 + 9 \) | \(23 = 0 + 7 + 7 + 9 \) | \(24 = \frac{ \frac{ 7! }{ 70 } }{ \sqrt{9 } }\) |
\(25 = ( 7 - 0! ) \cdot \sqrt{9} + 7 \) | \(26 = \frac{ 77 + 0! }{ \sqrt{9 } }\) | \(27 = 97 - 70 \) | \(28 = 70 - 7 \cdot \sqrt{9 }!\) |
\(29 = 7 \cdot \sqrt{9} + 0! + 7 \) | \(30 = \sqrt{907 - 7 }\) | \(31 = ( 7^{0} + \sqrt{9} )! + 7 \) | \(32 = ( 0! + 7 ) \cdot ( 7 - \sqrt{9 } )\) |
\(33 = ( 7 - 0! ) \cdot 7 - 9 \) | \(34 = \sqrt{\sqrt{9}^{7 - 0!}} + 7 \) | \(35 = \frac{ 70 }{ 9 - 7 }\) | \(36 = ( 7 - 0! )^{9 - 7 }\) |
\(37 = \frac{ 9! }{ 7! + 7! } + 0 !\) | \(38 = ( 0! + \sqrt{9} )! + 7 + 7 \) | \(39 = 7 \cdot 7 - 0! - 9 \) | \(40 = ( 0 + 7 ) \cdot 7 - 9 \) |
\(41 = 90 - 7 \cdot 7 \) | \(42 = ( 7 - 9^{0} ) \cdot 7 \) | \(43 = ( 0 + 7 ) \cdot 7 - \sqrt{9 }!\) | \(44 = 7 \cdot 7 + 0! - \sqrt{9 }!\) |
\(45 = ( 0! + 7 + 7 ) \cdot \sqrt{9 }\) | \(46 = 70 - ( 7 - \sqrt{9 } )!\) | \(47 = ( 0! + 7 ) \cdot 7 - 9 \) | \(48 = 7 \cdot 7 - 9^{0 }\) |
\(49 = 70 - 7 \cdot \sqrt{9 }\) | \(50 = 770 - \sqrt{9 }!!\) | \(51 = ( 7 - 0! ) \cdot 7 + 9 \) | \(52 = ( 0 + 7 ) \cdot 7 + \sqrt{9 }\) |
\(53 = 77 - ( 0! + \sqrt{9 } )!\) | \(54 = 70 - 7 - 9 \) | \(55 = 7 \cdot 9 - 0! - 7 \) | \(56 = ( 9 - 7^{0} ) \cdot 7 \) |
\(57 = 70 - 7 - \sqrt{9 }!\) | \(58 = ( 0 + 7 ) \cdot 7 + 9 \) | \(59 = 7 \cdot 7 + 0! + 9 \) | \(60 = 70 - 7 - \sqrt{9 }\) |
\(61 = ( 7 - 0! ) \cdot 9 + 7 \) | \(62 = 7 \cdot 9 - 7^{0 }\) | \(63 = \frac{ 7! }{ 70 } - 9 \) | \(64 = 7^{0} + 7 \cdot 9 \) |
\(65 = \sqrt{\frac{ 9! }{ 70 }} - 7 \) | \(66 = 70 - 7 + \sqrt{9 }\) | \(67 = 77 - 0! - 9 \) | \(68 = 70 + 7 - 9 \) |
\(69 = 77 + 0! - 9 \) | \(70 = \sqrt{70^{9 - 7 }}\) | \(71 = 79 - 0! - 7 \) | \(72 = 70 - 7 + 9 \) |
\(73 = 79 + 0! - 7 \) | \(74 = 70 + 7 - \sqrt{9 }\) | \(75 = \frac{ 7! }{ 70 } + \sqrt{9 }\) | \(76 = 77 - 9^{0 }\) |
\(77 = 0 \cdot 9 + 77 \) | \(78 = 9^{0} + 77 \) | \(79 = 0 \cdot 7 + 79 \) | \(80 = 7^{0} + 79 \) |
\(81 = \frac{ 7! }{ 70 } + 9 \) | \(82 = 77 - 0! + \sqrt{9 }!\) | \(83 = 90 - \sqrt{7 \cdot 7 }\) | \(84 = 77 + 0! + \sqrt{9 }!\) |
\(85 = 77 - 0! + 9 \) | \(86 = 70 + 7 + 9 \) | \(87 = 77 + 0! + 9 \) | \(88 = \sqrt{\sqrt{9}^{0! + 7}} + 7 \) |
\(89 = 90 - \frac{ 7 }{ 7 }\) | \(90 = \frac{ 70 }{ 7 } \cdot 9 \) | \(91 = \frac{ 7 }{ 7 } + 90 \) | \(92 = ( 7 + \sqrt{9}! ) \cdot 7 + 0 !\) |
\(93 = ?\) | \(94 = ( 7 - \sqrt{9} )! + 70 \) | \(95 = \sqrt{0! + 7!} + ( 7 - \sqrt{9 } )!\) | \(96 = 97 - 7^{0 }\) |
\(97 = 0 \cdot 7 + 97 \) | \(98 = 7^{0} + 97 \) | \(99 = ?\) | \(100 = \sqrt{\sqrt{( 7 + \sqrt{9} )^{0! + 7 }}}\) |