\(1 = ( 579 \cdot 0 )!\) | \(2 = \sqrt{9} - 57^{0 }\) | \(3 = 57 \cdot 0 + \sqrt{9 }\) | \(4 = 5 - 79^{0 }\) |
\(5 = \sqrt{95 - 70 }\) | \(6 = 7 - 59^{0 }\) | \(7 = 59 \cdot 0 + 7 \) | \(8 = 9 - 57^{0 }\) |
\(9 = 57 \cdot 0 + 9 \) | \(10 = 57^{0} + 9 \) | \(11 = 70 - 59 \) | \(12 = 0 \cdot 9 + 5 + 7 \) |
\(13 = 7 \cdot 9 - 50 \) | \(14 = 0 \cdot 7 + 5 + 9 \) | \(15 = 90 - 75 \) | \(16 = \frac{ 79 + 0! }{ 5 }\) |
\(17 = \frac{ 70 }{ 5 } + \sqrt{9 }\) | \(18 = ( 7 - ( 0 + 5 ) ) \cdot 9 \) | \(19 = \frac{ 50 + 7 }{ \sqrt{9 } }\) | \(20 = \frac{ 57 }{ \sqrt{9} } + 0 !\) |
\(21 = 0 + 5 + 7 + 9 \) | \(22 = \frac{ 9! }{ 7! } - 50 \) | \(23 = \frac{ 70 }{ 5 } + 9 \) | \(24 = \sqrt{570 + \sqrt{9 }!}\) |
\(25 = 95 - 70 \) | \(26 = ( 0 + 5 ) \cdot 7 - 9 \) | \(27 = ( 7 - ( 5 - 0! ) ) \cdot 9 \) | \(28 = ( 9 - ( 0 + 5 ) ) \cdot 7 \) |
\(29 = 79 - 50 \) | \(30 = 750 - \sqrt{9 }!!\) | \(31 = ( 0! + 7 ) \cdot 5 - 9 \) | \(32 = ( 9 - ( 0 + 7 ) )^{5 }\) |
\(33 = 90 - 57 \) | \(34 = 50 - 7 - 9 \) | \(35 = \frac{ 70 }{ 5 - \sqrt{9 } }\) | \(36 = ( 5 - 7^{0} ) \cdot 9 \) |
\(37 = 5! - 90 + 7 \) | \(38 = ( 0 + 5 ) \cdot 9 - 7 \) | \(39 = \sqrt{507 \cdot \sqrt{9 }}\) | \(40 = 50 - 7 - \sqrt{9 }\) |
\(41 = 5! - 70 - 9 \) | \(42 = \frac{ 70 }{ 5 } \cdot \sqrt{9 }\) | \(43 = 5 \cdot 7 - 0! + 9 \) | \(44 = ( 0 + 5 ) \cdot 7 + 9 \) |
\(45 = \frac{ 90 }{ 7 - 5 }\) | \(46 = 50 - 7 + \sqrt{9 }\) | \(47 = 97 - 50 \) | \(48 = 50 + 7 - 9 \) |
\(49 = 57 + 0! - 9 \) | \(50 = \sqrt{50^{9 - 7 }}\) | \(51 = 59 - 0! - 7 \) | \(52 = 50 - 7 + 9 \) |
\(53 = 59 + 0! - 7 \) | \(54 = 50 + 7 - \sqrt{9 }\) | \(55 = 90 - 5 \cdot 7 \) | \(56 = 57 - 9^{0 }\) |
\(57 = 0 \cdot 9 + 57 \) | \(58 = 9^{0} + 57 \) | \(59 = 0 \cdot 7 + 59 \) | \(60 = 7^{0} + 59 \) |
\(61 = \frac{ 7! }{ 90 } + 5 \) | \(62 = 70 - 5 - \sqrt{9 }\) | \(63 = ( 0 \cdot 5 + 7 ) \cdot 9 \) | \(64 = 5^{0} + 7 \cdot 9 \) |
\(65 = 57 - 0! + 9 \) | \(66 = 50 + 7 + 9 \) | \(67 = 57 + 0! + 9 \) | \(68 = 70 - 5 + \sqrt{9 }\) |
\(69 = 70 + 5 - \sqrt{9 }!\) | \(70 = ( 5^{0} + 9 ) \cdot 7 \) | \(71 = 7 \cdot \sqrt{9} + 50 \) | \(72 = 70 + 5 - \sqrt{9 }\) |
\(73 = 79 - 0! - 5 \) | \(74 = 70 - 5 + 9 \) | \(75 = 0 \cdot 9 + 75 \) | \(76 = 9^{0} + 75 \) |
\(77 = \sqrt{\frac{ 9! }{ 70 }} + 5 \) | \(78 = 79 - 5^{0 }\) | \(79 = 0 \cdot 5 + 79 \) | \(80 = 5^{0} + 79 \) |
\(81 = 9^{7 - ( 0 + 5 )}\) | \(82 = 9^{7 - 5} + 0 !\) | \(83 = 75 - 0! + 9 \) | \(84 = 70 + 5 + 9 \) |
\(85 = 5 \cdot \sqrt{9} + 70 \) | \(86 = 97 - \sqrt{0! + 5 !}\) | \(87 = 95 - 0! - 7 \) | \(88 = 90 + 5 - 7 \) |
\(89 = 95 + 0! - 7 \) | \(90 = \sqrt{90^{7 - 5 }}\) | \(91 = 97 - 0! - 5 \) | \(92 = 90 - 5 + 7 \) |
\(93 = 97 + 0! - 5 \) | \(94 = 95 - 7^{0 }\) | \(95 = \frac{ 570 }{ \sqrt{9 }! }\) | \(96 = 7^{0} + 95 \) |
\(97 = 0 \cdot 5 + 97 \) | \(98 = 5^{0} + 97 \) | \(99 = \sqrt{5 - 0!} + 97 \) | \(100 = ( 9 - 7 ) \cdot 50 \) |