\(1 = ( 578 \cdot 0 )!\) | \(2 = \sqrt{5 - 78^{0 }}\) | \(3 = \sqrt{57^{0} + 8 }\) | \(4 = 5 - 78^{0 }\) |
\(5 = 80 - 75 \) | \(6 = \frac{ 50 - 8 }{ 7 }\) | \(7 = 8 - 57^{0 }\) | \(8 = 57 \cdot 0 + 8 \) |
\(9 = 57^{0} + 8 \) | \(10 = 7 - ( 0 + 5 ) + 8 \) | \(11 = \sqrt{\frac{ 80 }{ 5 }} + 7 \) | \(12 = 70 - 58 \) |
\(13 = \sqrt{50 \cdot 8} - 7 \) | \(14 = 7 - 5^{0} + 8 \) | \(15 = 85 - 70 \) | \(16 = ( 7 - ( 0 + 5 ) ) \cdot 8 \) |
\(17 = \sqrt{\frac{ 80 }{ 5 }}! - 7 \) | \(18 = ( 7 - 0! ) \cdot ( 8 - 5 )\) | \(19 = \frac{ 57 }{ \sqrt{0! + 8 } }\) | \(20 = 0 + 5 + 7 + 8 \) |
\(21 = ( 8 - ( 0 + 5 ) ) \cdot 7 \) | \(22 = \frac{ 70 }{ 5 } + 8 \) | \(23 = 80 - 57 \) | \(24 = ( 5 - 78^{0 } )!\) |
\(25 = \frac{ 75 }{ \sqrt{0! + 8 } }\) | \(26 = 5 \cdot 7 - 0! - 8 \) | \(27 = \sqrt{50 \cdot 8} + 7 \) | \(28 = 78 - 50 \) |
\(29 = \sqrt{\frac{ 8! }{ 70 }} + 5 \) | \(30 = 70 - 5 \cdot 8 \) | \(31 = \sqrt{\frac{ 80 }{ 5 }}! + 7 \) | \(32 = ( 5 - 7^{0} ) \cdot 8 \) |
\(33 = 5! - 80 - 7 \) | \(34 = 5 \cdot 7 - 8^{0 }\) | \(35 = 50 - 7 - 8 \) | \(36 = 8^{0} + 5 \cdot 7 \) |
\(37 = 87 - 50 \) | \(38 = 80 - \frac{ 7! }{ 5 ! }\) | \(39 = 5 \cdot 8 - 7^{0 }\) | \(40 = \frac{ 80 }{ 7 - 5 }\) |
\(41 = 7^{0} + 5 \cdot 8 \) | \(42 = 5! - 70 - 8 \) | \(43 = ( 0 + 5 ) \cdot 7 + 8 \) | \(44 = 5 \cdot 7 + 0! + 8 \) |
\(45 = 80 - 5 \cdot 7 \) | \(46 = 5 \cdot 8 - 0! + 7 \) | \(47 = 5! - 80 + 7 \) | \(48 = 57 - 0! - 8 \) |
\(49 = 50 + 7 - 8 \) | \(50 = ( 8 - 7 ) \cdot 50 \) | \(51 = 50 - 7 + 8 \) | \(52 = 58 + 0! - 7 \) |
\(53 = ( 7 - 0! ) \cdot 8 + 5 \) | \(54 = 57 - \sqrt{0! + 8 }\) | \(55 = 70 - \frac{ 5! }{ 8 }\) | \(56 = 57 - 8^{0 }\) |
\(57 = 0 \cdot 8 + 57 \) | \(58 = 8^{0} + 57 \) | \(59 = 7^{0} + 58 \) | \(60 = \sqrt{0! + 8} + 57 \) |
\(61 = ( 0 + 7 ) \cdot 8 + 5 \) | \(62 = 7 \cdot 8 + 0! + 5 \) | \(63 = ( 5^{0} + 8 ) \cdot 7 \) | \(64 = 57 - 0! + 8 \) |
\(65 = 50 + 7 + 8 \) | \(66 = 57 + 0! + 8 \) | \(67 = 70 + 5 - 8 \) | \(68 = 80 - 5 - 7 \) |
\(69 = ( 0! + 7 ) \cdot 8 + 5 \) | \(70 = ( 7 - 0! + 8 ) \cdot 5 \) | \(71 = \sqrt{58^{0} + 7 !}\) | \(72 = 78 - 0! - 5 \) |
\(73 = 70 - 5 + 8 \) | \(74 = 75 - 8^{0 }\) | \(75 = 0 \cdot 8 + 75 \) | \(76 = 8^{0} + 75 \) |
\(77 = 78 - 5^{0 }\) | \(78 = 0 \cdot 5 + 78 \) | \(79 = 5^{0} + 78 \) | \(80 = \sqrt{80^{7 - 5 }}\) |
\(81 = 87 - 0! - 5 \) | \(82 = 80 - 5 + 7 \) | \(83 = 70 + 5 + 8 \) | \(84 = 85 - 7^{0 }\) |
\(85 = 0 \cdot 7 + 85 \) | \(86 = 7^{0} + 85 \) | \(87 = 0 \cdot 5 + 87 \) | \(88 = 5^{0} + 87 \) |
\(89 = \sqrt{5 - 0!} + 87 \) | \(90 = \frac{ ( 7 - 5^{0} )! }{ 8 }\) | \(91 = 85 - 0! + 7 \) | \(92 = 80 + 5 + 7 \) |
\(93 = 85 + 0! + 7 \) | \(94 = ?\) | \(95 = \sqrt{\sqrt{5^{8}}} + 70 \) | \(96 = ( 0 + 5 + 7 ) \cdot 8 \) |
\(97 = ( 5 + 7 ) \cdot 8 + 0 !\) | \(98 = ( 0! + 5 + 8 ) \cdot 7 \) | \(99 = \sqrt{\sqrt{7^{8}}} + 50 \) | \(100 = ?\) |