\(1 = ( 477 \cdot 0 )!\) | \(2 = \sqrt{74 - 70 }\) | \(3 = 4 - 77^{0 }\) | \(4 = 74 - 70 \) |
\(5 = 77^{0} + 4 \) | \(6 = 7 - 47^{0 }\) | \(7 = 47 \cdot 0 + 7 \) | \(8 = 47^{0} + 7 \) |
\(9 = 7 \cdot 7 - 40 \) | \(10 = 7 - ( 0 + 4 ) + 7 \) | \(11 = 0 \cdot 7 + 4 + 7 \) | \(12 = \sqrt{70 + 74 }\) |
\(13 = 7 - 4^{0} + 7 \) | \(14 = \frac{ 70 }{ 7 } + 4 \) | \(15 = 4^{0} + 7 + 7 \) | \(16 = 0 + \sqrt{4} + 7 + 7 \) |
\(17 = ( 0 \cdot 7 + 4 )! - 7 \) | \(18 = \frac{ \frac{ 7! }{ 40 } }{ 7 }\) | \(19 = \frac{ 77 - 0! }{ 4 }\) | \(20 = \sqrt{407 - 7 }\) |
\(21 = 70 - 7^{\sqrt{4 }}\) | \(22 = 4 \cdot 7 + 0! - 7 \) | \(23 = 70 - 47 \) | \(24 = ( 74 - 70 )!\) |
\(25 = 77^{0} + 4 !\) | \(26 = 40 - 7 - 7 \) | \(27 = 4 \cdot 7 - 7^{0 }\) | \(28 = \frac{ 70 }{ \sqrt{4} } - 7 \) |
\(29 = 7^{0} + 4 \cdot 7 \) | \(30 = 4! - 7^{0} + 7 \) | \(31 = ( 0 \cdot 7 + 4 )! + 7 \) | \(32 = ( 7^{0} + 7 ) \cdot 4 \) |
\(33 = 40 - \sqrt{7 \cdot 7 }\) | \(34 = \frac{ 70 }{ 7 } + 4 !\) | \(35 = ( 7^{0} + 4 ) \cdot 7 \) | \(36 = \frac{ 7! }{ 70 \cdot \sqrt{4 } }\) |
\(37 = 77 - 40 \) | \(38 = \frac{ 77 - 0! }{ \sqrt{4 } }\) | \(39 = 40 - \frac{ 7 }{ 7 }\) | \(40 = 40 - 7 + 7 \) |
\(41 = \frac{ 7 }{ 7 } + 40 \) | \(42 = 70 - 4 \cdot 7 \) | \(43 = ( 0! + 4 )! - 77 \) | \(44 = 7 \cdot 7 - 0! - 4 \) |
\(45 = ( 0 + 7 ) \cdot 7 - 4 \) | \(46 = 47 - 7^{0 }\) | \(47 = 0 \cdot 7 + 47 \) | \(48 = 7^{0} + 47 \) |
\(49 = ( 0 \cdot 4 + 7 ) \cdot 7 \) | \(50 = 4^{0} + 7 \cdot 7 \) | \(51 = ( 0 + 7 ) \cdot 7 + \sqrt{4 }\) | \(52 = 77 - 0! - 4 !\) |
\(53 = 47 - 0! + 7 \) | \(54 = 40 + 7 + 7 \) | \(55 = 47 + 0! + 7 \) | \(56 = 70 - \sqrt{4} \cdot 7 \) |
\(57 = ( 7 + 7 ) \cdot 4 + 0 !\) | \(58 = \sqrt{4}^{7} - 70 \) | \(59 = 70 - 4 - 7 \) | \(60 = ( 0! + 7 + 7 ) \cdot 4 \) |
\(61 = 70 - \sqrt{4} - 7 \) | \(62 = ( \sqrt{4} + 7 ) \cdot 7 - 0 !\) | \(63 = \sqrt{70^{\sqrt{4}}} - 7 \) | \(64 = 70 - ( 7 - 4 )!\) |
\(65 = 70 + \sqrt{4} - 7 \) | \(66 = 74 - 0! - 7 \) | \(67 = 70 + 4 - 7 \) | \(68 = \frac{ 7! }{ 70 } - 4 \) |
\(69 = \sqrt{7^{0} + 7!} - \sqrt{4 }\) | \(70 = \frac{ 7! }{ 70 + \sqrt{4 } }\) | \(71 = \sqrt{47^{0} + 7 !}\) | \(72 = 77 - 0! - 4 \) |
\(73 = 70 - 4 + 7 \) | \(74 = 0 \cdot 7 + 74 \) | \(75 = 7^{0} + 74 \) | \(76 = 77 - 4^{0 }\) |
\(77 = 0 \cdot 4 + 77 \) | \(78 = 4^{0} + 77 \) | \(79 = 70 + \sqrt{4} + 7 \) | \(80 = 74 - 0! + 7 \) |
\(81 = 70 + 4 + 7 \) | \(82 = 74 + 0! + 7 \) | \(83 = ( 4 - 0! )! + 77 \) | \(84 = \sqrt{4} \cdot 7 + 70 \) |
\(85 = \sqrt{0! + 7!} + \sqrt{4} \cdot 7 \) | \(86 = ?\) | \(87 = 70 + 4! - 7 \) | \(88 = ( 0! + 7 ) \cdot ( 4 + 7 )\) |
\(89 = 7 \cdot 7 + 40 \) | \(90 = \frac{ ( 7 - 4 )!! }{ 0! + 7 }\) | \(91 = ( ( 4 - 0! )! + 7 ) \cdot 7 \) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = \sqrt{7^{0} + 7!} + 4 !\) | \(96 = \frac{ 7! }{ 70 } + 4 !\) |
\(97 = \sqrt{4} \cdot 7 \cdot 7 - 0 !\) | \(98 = 4 \cdot 7 + 70 \) | \(99 = \sqrt{4} \cdot 7 \cdot 7 + 0 !\) | \(100 = ( \frac{ 70 }{ 7 } )^{\sqrt{4 }}\) |