\(1 = ( 457 \cdot 0 )!\) | \(2 = \sqrt{\sqrt{70 - 54 }}\) | \(3 = 50 - 47 \) | \(4 = \sqrt{70 - 54 }\) |
\(5 = \sqrt{70 - 45 }\) | \(6 = ( 50 - 47 )!\) | \(7 = 45 \cdot 0 + 7 \) | \(8 = 45^{0} + 7 \) |
\(9 = \frac{ 54 }{ 7 - 0 ! }\) | \(10 = \frac{ 7! }{ 504 }\) | \(11 = 5 - 4^{0} + 7 \) | \(12 = \frac{ 70 }{ 5 } - \sqrt{4 }\) |
\(13 = 4^{0} + 5 + 7 \) | \(14 = \frac{ 57 - 0! }{ 4 }\) | \(15 = \frac{ 40 }{ 5 } + 7 \) | \(16 = 70 - 54 \) |
\(17 = 57 - 40 \) | \(18 = \frac{ 70 }{ 5 } + 4 \) | \(19 = 50 - 4! - 7 \) | \(20 = \frac{ 40 }{ 7 - 5 }\) |
\(21 = \frac{ 5! }{ 40 } \cdot 7 \) | \(22 = 50 - 4 \cdot 7 \) | \(23 = 4! - 57^{0 }\) | \(24 = 74 - 50 \) |
\(25 = 70 - 45 \) | \(26 = 5! - ( 70 + 4 ! )\) | \(27 = \sqrt{705 + 4 !}\) | \(28 = 40 - 5 - 7 \) |
\(29 = 5^{0} + 4 \cdot 7 \) | \(30 = \frac{ 70 }{ \sqrt{4} } - 5 \) | \(31 = ( 0 + 5 ) \cdot 7 - 4 \) | \(32 = \frac{ 50 }{ \sqrt{4} } + 7 \) |
\(33 = 50 - 4! + 7 \) | \(34 = 5 \cdot 7 - 4^{0 }\) | \(35 = 75 - 40 \) | \(36 = 50 - \sqrt{4} \cdot 7 \) |
\(37 = 45 - 0! - 7 \) | \(38 = 40 + 5 - 7 \) | \(39 = 50 - 4 - 7 \) | \(40 = \sqrt{40^{7 - 5 }}\) |
\(41 = 47 - 0! - 5 \) | \(42 = 40 - 5 + 7 \) | \(43 = 47 + 0! - 5 \) | \(44 = 45 - 7^{0 }\) |
\(45 = 0 \cdot 7 + 45 \) | \(46 = 7^{0} + 45 \) | \(47 = 0 \cdot 5 + 47 \) | \(48 = 5^{0} + 47 \) |
\(49 = \sqrt{\sqrt{7^{\frac{ 40 }{ 5 }}}}\) | \(50 = 70 - 4 \cdot 5 \) | \(51 = 45 - 0! + 7 \) | \(52 = 40 + 5 + 7 \) |
\(53 = 50 - 4 + 7 \) | \(54 = 0 \cdot 7 + 54 \) | \(55 = 7^{0} + 54 \) | \(56 = \frac{ 40 }{ 5 } \cdot 7 \) |
\(57 = 0 \cdot 4 + 57 \) | \(58 = 4^{0} + 57 \) | \(59 = 50 + \sqrt{4} + 7 \) | \(60 = 54 - 0! + 7 \) |
\(61 = 50 + 4 + 7 \) | \(62 = 54 + 0! + 7 \) | \(63 = 70 - \sqrt{4} - 5 \) | \(64 = \sqrt{4} \cdot 7 + 50 \) |
\(65 = \sqrt{70^{\sqrt{4}}} - 5 \) | \(66 = ( 0! + 5 ) \cdot ( 4 + 7 )\) | \(67 = 50 + 4! - 7 \) | \(68 = 74 - 0! - 5 \) |
\(69 = 70 + 4 - 5 \) | \(70 = ( 5 - 4 ) \cdot 70 \) | \(71 = 70 - 4 + 5 \) | \(72 = \frac{ 504 }{ 7 }\) |
\(73 = 74 - 5^{0 }\) | \(74 = 0 \cdot 5 + 74 \) | \(75 = 5 \cdot 7 + 40 \) | \(76 = 4^{0} + 75 \) |
\(77 = 70 + \sqrt{4} + 5 \) | \(78 = 4 \cdot 7 + 50 \) | \(79 = 70 + 4 + 5 \) | \(80 = ( 7 - 5 ) \cdot 40 \) |
\(81 = 50 + 4! + 7 \) | \(82 = \frac{ 7! }{ 5! } + 40 \) | \(83 = \sqrt{4! + 5!} \cdot 7 - 0 !\) | \(84 = ( 0! + 5 ) \cdot \sqrt{4} \cdot 7 \) |
\(85 = 5! - \frac{ 70 }{ \sqrt{4 } }\) | \(86 = ( 50 - 7 ) \cdot \sqrt{4 }\) | \(87 = 5! - 40 + 7 \) | \(88 = 5! - ( 0! + 7 ) \cdot 4 \) |
\(89 = 70 + 4! - 5 \) | \(90 = 4 \cdot 5 + 70 \) | \(91 = 5! - ( 4 \cdot 7 + 0 ! )\) | \(92 = 5! - ( 0 + 4 ) \cdot 7 \) |
\(93 = 50 \cdot \sqrt{4} - 7 \) | \(94 = \frac{ 470 }{ 5 }\) | \(95 = 5^{\sqrt{4}} + 70 \) | \(96 = ( 5 - 7^{0} ) \cdot 4 !\) |
\(97 = 40 + 57 \) | \(98 = ( 5 - 0! )! + 74 \) | \(99 = 7^{\sqrt{4}} + 50 \) | \(100 = \frac{ 5! }{ 4 } + 70 \) |