\(1 = ( 447 \cdot 0 )!\) | \(2 = 47 \cdot 0 + \sqrt{4 }\) | \(3 = \frac{ 40 }{ 4 } - 7 \) | \(4 = 47 \cdot 0 + 4 \) |
\(5 = 47^{0} + 4 \) | \(6 = 7 - 44^{0 }\) | \(7 = 47 - 40 \) | \(8 = 44^{0} + 7 \) |
\(9 = 40 - 4! - 7 \) | \(10 = 4 - 4^{0} + 7 \) | \(11 = 0 \cdot 4 + 4 + 7 \) | \(12 = 40 - 4 \cdot 7 \) |
\(13 = \sqrt{40 - 4} + 7 \) | \(14 = ( 0 \cdot 4 + \sqrt{4} ) \cdot 7 \) | \(15 = 0 + 4 + 4 + 7 \) | \(16 = ( 0 \cdot 7 + 4 ) \cdot 4 \) |
\(17 = \frac{ 40 }{ 4 } + 7 \) | \(18 = \frac{ 70 + \sqrt{4} }{ 4 }\) | \(19 = ( 4 - 0! ) \cdot 4 + 7 \) | \(20 = ( 7^{0} + 4 ) \cdot 4 \) |
\(21 = ( 4 - 4^{0} ) \cdot 7 \) | \(22 = 47 - 0! - 4 !\) | \(23 = 40 - 4! + 7 \) | \(24 = ( 47 \cdot 0 + 4 )!\) |
\(25 = 47^{0} + 4 !\) | \(26 = 70 - 44 \) | \(27 = \frac{ 40 }{ \sqrt{4} } + 7 \) | \(28 = ( 0 \cdot 4 + 4 ) \cdot 7 \) |
\(29 = 40 - 4 - 7 \) | \(30 = 4! - 4^{0} + 7 \) | \(31 = 40 - \sqrt{4} - 7 \) | \(32 = ( 4^{0} + 7 ) \cdot 4 \) |
\(33 = \frac{ 70 - 4 }{ \sqrt{4 } }\) | \(34 = 74 - 40 \) | \(35 = 40 + \sqrt{4} - 7 \) | \(36 = 44 - 0! - 7 \) |
\(37 = 40 + 4 - 7 \) | \(38 = 44 + 0! - 7 \) | \(39 = \frac{ 70 }{ \sqrt{4} } + 4 \) | \(40 = ( 4 - 0! + 7 ) \cdot 4 \) |
\(41 = 47 - ( 4 - 0 ! )!\) | \(42 = \sqrt{40 - 4} \cdot 7 \) | \(43 = 40 - 4 + 7 \) | \(44 = 0 \cdot 7 + 44 \) |
\(45 = 7^{0} + 44 \) | \(46 = 47 - 4^{0 }\) | \(47 = 0 \cdot 4 + 47 \) | \(48 = 4^{0} + 47 \) |
\(49 = 40 + \sqrt{4} + 7 \) | \(50 = 44 - 0! + 7 \) | \(51 = 40 + 4 + 7 \) | \(52 = 44 + 0! + 7 \) |
\(53 = ( 4 - 0! )! + 47 \) | \(54 = 70 - 4 \cdot 4 \) | \(55 = ( 4 + 4 ) \cdot 7 - 0 !\) | \(56 = ( 0 + 4 + 4 ) \cdot 7 \) |
\(57 = 40 + 4! - 7 \) | \(58 = 70 - \frac{ 4! }{ \sqrt{4 } }\) | \(59 = \frac{ 70 }{ \sqrt{4} } + 4 !\) | \(60 = \frac{ ( 7^{0} + 4 )! }{ \sqrt{4 } }\) |
\(61 = ( 4! + 7 ) \cdot \sqrt{4} - 0 !\) | \(62 = 70 - 4 - 4 \) | \(63 = \frac{ 7! }{ 40 \cdot \sqrt{4 } }\) | \(64 = 70 - 4 - \sqrt{4 }\) |
\(65 = 4^{7 - 4} + 0 !\) | \(66 = ( 40 - 7 ) \cdot \sqrt{4 }\) | \(67 = \sqrt{4^{0} + 7!} - 4 \) | \(68 = 4 \cdot 7 + 40 \) |
\(69 = 70 - \frac{ 4 }{ 4 }\) | \(70 = \frac{ 40 }{ 4 } \cdot 7 \) | \(71 = \frac{ 4 }{ 4 } + 70 \) | \(72 = 70 - \sqrt{4} + 4 \) |
\(73 = 74 - 4^{0 }\) | \(74 = 0 \cdot 4 + 74 \) | \(75 = 4^{0} + 74 \) | \(76 = 70 + \sqrt{4} + 4 \) |
\(77 = 74 - 0! + 4 \) | \(78 = 70 + 4 + 4 \) | \(79 = 74 + 0! + 4 \) | \(80 = ( 7 - \sqrt{4} )! - 40 \) |
\(81 = ( 7 - ( 0 + 4 ) )^{4 }\) | \(82 = \frac{ 4! }{ \sqrt{4} } + 70 \) | \(83 = \frac{ 4! }{ \sqrt{4} } \cdot 7 - 0 !\) | \(84 = ( 4 - 0! ) \cdot 4 \cdot 7 \) |
\(85 = ( 4! - 0! ) \cdot 4 - 7 \) | \(86 = 4 \cdot 4 + 70 \) | \(87 = 40 + 47 \) | \(88 = \sqrt{4}^{7} - 40 \) |
\(89 = 7^{\sqrt{4}} + 40 \) | \(90 = 70 - 4 + 4 !\) | \(91 = ( \frac{ 4! }{ \sqrt{4} } + 0! ) \cdot 7 \) | \(92 = ( 47 - 0! ) \cdot \sqrt{4 }\) |
\(93 = 47 \cdot \sqrt{4} - 0 !\) | \(94 = ( 40 + 7 ) \cdot \sqrt{4 }\) | \(95 = 47 \cdot \sqrt{4} + 0 !\) | \(96 = ( 47 + 0! ) \cdot \sqrt{4 }\) |
\(97 = 74 - 0! + 4 !\) | \(98 = 70 + 4 + 4 !\) | \(99 = 74 + 0! + 4 !\) | \(100 = ( 7^{0} + 4! ) \cdot 4 \) |