\(1 = ( 288 \cdot 0 )!\) | \(2 = 82 - 80 \) | \(3 = 88^{0} + 2 \) | \(4 = 20 - 8 - 8 \) |
\(5 = \frac{ \frac{ 80 }{ 2 } }{ 8 }\) | \(6 = \sqrt{20 + 8 + 8 }\) | \(7 = 8 - 28^{0 }\) | \(8 = 28 \cdot 0 + 8 \) |
\(9 = 28^{0} + 8 \) | \(10 = \frac{ \sqrt{80^{2}} }{ 8 }\) | \(11 = 8^{0} + 2 + 8 \) | \(12 = \sqrt{\frac{ 8! }{ 280 }}\) |
\(13 = 8 - ( 0! + 2 ) + 8 \) | \(14 = 8 - ( 0 + 2 ) + 8 \) | \(15 = 8 - 2^{0} + 8 \) | \(16 = 80 - 8^{2 }\) |
\(17 = \sqrt{288 + 0 !}\) | \(18 = 0 + 2 + 8 + 8 \) | \(19 = 20 - \frac{ 8 }{ 8 }\) | \(20 = 20 - 8 + 8 \) |
\(21 = \frac{ 8 }{ 8 } + 20 \) | \(22 = \sqrt{\sqrt{8 + 8}} + 20 \) | \(23 = 2 \cdot 8 - 0! + 8 \) | \(24 = ( 20 - 8 - 8 )!\) |
\(25 = 28 - \sqrt{0! + 8 }\) | \(26 = \frac{ 208 }{ 8 }\) | \(27 = 28 - 8^{0 }\) | \(28 = 0 \cdot 8 + 28 \) |
\(29 = 8^{0} + 28 \) | \(30 = ( 8 - 0! + 8 ) \cdot 2 \) | \(31 = \sqrt{0! + 8} + 28 \) | \(32 = \frac{ 80 }{ 2 } - 8 \) |
\(33 = \frac{ 8 }{ 2 } \cdot 8 + 0 !\) | \(34 = ( 0! + 8 + 8 ) \cdot 2 \) | \(35 = \frac{ 280 }{ 8 }\) | \(36 = 20 + 8 + 8 \) |
\(37 = 28 + 0! + 8 \) | \(38 = \sqrt{\sqrt{\sqrt{0! + 8}!^{8}}} + 2 \) | \(39 = ?\) | \(40 = \frac{ 80 }{ \sqrt{\frac{ 8 }{ 2 }} }\) |
\(41 = ( 8 - 0! )^{2} - 8 \) | \(42 = ( 8 - 0! ) \cdot ( 8 - 2 )\) | \(43 = \frac{ 88 }{ 2 } - 0 !\) | \(44 = 8 \cdot 8 - 20 \) |
\(45 = \frac{ 88 }{ 2 } + 0 !\) | \(46 = ( \sqrt{8 + 8}! - 0! ) \cdot 2 \) | \(47 = ( 8 - 2 ) \cdot 8 - 0 !\) | \(48 = \frac{ 80 }{ 2 } + 8 \) |
\(49 = ( 8 - 8^{0} )^{2 }\) | \(50 = \frac{ \sqrt{\sqrt{20^{8}}} }{ 8 }\) | \(51 = \sqrt{\sqrt{( 8 - 0! )^{8}}} + 2 \) | \(52 = 80 - 28 \) |
\(53 = ?\) | \(54 = ( 8 - 0! ) \cdot 8 - 2 \) | \(55 = 8^{2} - 0! - 8 \) | \(56 = 80 - ( \frac{ 8 }{ 2 } )!\) |
\(57 = ( 8 - 0! )^{2} + 8 \) | \(58 = ( 8 - 0! ) \cdot 8 + 2 \) | \(59 = ?\) | \(60 = \frac{ ( 8 - \sqrt{0! + 8} )! }{ 2 }\) |
\(61 = 8 \cdot 8 - 0! - 2 \) | \(62 = ( 0 + 8 ) \cdot 8 - 2 \) | \(63 = 8 \cdot 8 - 2^{0 }\) | \(64 = 80 - 2 \cdot 8 \) |
\(65 = 2^{0} + 8 \cdot 8 \) | \(66 = ( 0 + 8 ) \cdot 8 + 2 \) | \(67 = 8 \cdot 8 + 0! + 2 \) | \(68 = 88 - 20 \) |
\(69 = \sqrt{\frac{ 8! }{ 8 } + 0!} - 2 \) | \(70 = 80 - 2 - 8 \) | \(71 = 8^{2} - 0! + 8 \) | \(72 = \sqrt{80^{2}} - 8 \) |
\(73 = 82 - 0! - 8 \) | \(74 = 80 + 2 - 8 \) | \(75 = 82 + 0! - 8 \) | \(76 = 80 - \frac{ 8 }{ 2 }\) |
\(77 = ?\) | \(78 = 80 - \sqrt{\frac{ 8 }{ 2 }}\) | \(79 = 82 - \sqrt{0! + 8 }\) | \(80 = \sqrt{8 + 8} \cdot 20 \) |
\(81 = 82 - 8^{0 }\) | \(82 = 0 \cdot 8 + 82 \) | \(83 = 8^{0} + 82 \) | \(84 = 8 \cdot 8 + 20 \) |
\(85 = 88 - 0! - 2 \) | \(86 = 80 - 2 + 8 \) | \(87 = 88 - 2^{0 }\) | \(88 = 0 \cdot 2 + 88 \) |
\(89 = 2^{0} + 88 \) | \(90 = 80 + 2 + 8 \) | \(91 = 82 + 0! + 8 \) | \(92 = \frac{ \sqrt{0! + 8}!! }{ 8 } + 2 \) |
\(93 = ?\) | \(94 = ( 0! + 2 )! + 88 \) | \(95 = ?\) | \(96 = ( 20 - 8 ) \cdot 8 \) |
\(97 = ?\) | \(98 = \frac{ ( 0! + 2 )!! }{ 8 } + 8 \) | \(99 = \sqrt{\sqrt{( 2 + 8 )^{8}}} - 0 !\) | \(100 = ( \frac{ 80 }{ 8 } )^{2 }\) |