\(1 = ( 278 \cdot 0 )!\) | \(2 = 78 \cdot 0 + 2 \) | \(3 = 78^{0} + 2 \) | \(4 = \frac{ 20 + 8 }{ 7 }\) |
\(5 = 20 - 7 - 8 \) | \(6 = 7 - 28^{0 }\) | \(7 = 8 - 27^{0 }\) | \(8 = 80 - 72 \) |
\(9 = 27^{0} + 8 \) | \(10 = \frac{ 72 }{ 8 } + 0 !\) | \(11 = 7^{0} + 2 + 8 \) | \(12 = 82 - 70 \) |
\(13 = 7 - ( 0 + 2 ) + 8 \) | \(14 = \sqrt{( 20 + 8 ) \cdot 7 }\) | \(15 = 0 \cdot 2 + 7 + 8 \) | \(16 = \frac{ 80 }{ 7 - 2 }\) |
\(17 = 0 + 2 + 7 + 8 \) | \(18 = \frac{ 7! }{ 280 }\) | \(19 = 20 + 7 - 8 \) | \(20 = ( 8 - 7 ) \cdot 20 \) |
\(21 = 20 - 7 + 8 \) | \(22 = 28 + 0! - 7 \) | \(23 = ( 0 + 2 ) \cdot 8 + 7 \) | \(24 = ( \frac{ 20 + 8 }{ 7 } )!\) |
\(25 = ( \frac{ 28 }{ 7 } )! + 0 !\) | \(26 = 27 - 8^{0 }\) | \(27 = 0 \cdot 8 + 27 \) | \(28 = 8^{0} + 27 \) |
\(29 = 7^{0} + 28 \) | \(30 = ( 0 + 7 + 8 ) \cdot 2 \) | \(31 = \frac{ 70 - 8 }{ 2 }\) | \(32 = ( 7 - ( 0! + 2 ) ) \cdot 8 \) |
\(33 = \frac{ 80 }{ 2 } - 7 \) | \(34 = 27 - 0! + 8 \) | \(35 = 20 + 7 + 8 \) | \(36 = 7 \cdot 8 - 20 \) |
\(37 = \sqrt{\sqrt{\sqrt{2 + 7}!^{8}}} + 0 !\) | \(38 = \frac{ 78 }{ 2 } - 0 !\) | \(39 = \frac{ 70 + 8 }{ 2 }\) | \(40 = \frac{ 280 }{ 7 }\) |
\(41 = 7^{0 + 2} - 8 \) | \(42 = 70 - 28 \) | \(43 = \frac{ 70 }{ 2 } + 8 \) | \(44 = \frac{ 87 + 0! }{ 2 }\) |
\(45 = ( 0! + 2 ) \cdot ( 7 + 8 )\) | \(46 = 70 - ( \frac{ 8 }{ 2 } )!\) | \(47 = \frac{ 80 }{ 2 } + 7 \) | \(48 = 2^{7} - 80 \) |
\(49 = 7^{0 \cdot 8 + 2 }\) | \(50 = 8^{0} + 7^{2 }\) | \(51 = ( 8 - 0! ) \cdot 7 + 2 \) | \(52 = \sqrt{0! + 8} + 7^{2 }\) |
\(53 = 80 - 27 \) | \(54 = 70 - 2 \cdot 8 \) | \(55 = 7 \cdot 8 - 2^{0 }\) | \(56 = \frac{ 8! }{ 720 }\) |
\(57 = 7^{0 + 2} + 8 \) | \(58 = 78 - 20 \) | \(59 = 7 \cdot 8 + 0! + 2 \) | \(60 = 70 - 2 - 8 \) |
\(61 = \frac{ 7! }{ 80 } - 2 \) | \(62 = \sqrt{70^{2}} - 8 \) | \(63 = 72 - 0! - 8 \) | \(64 = 70 + 2 - 8 \) |
\(65 = 72 + 0! - 8 \) | \(66 = 70 - \frac{ 8 }{ 2 }\) | \(67 = 87 - 20 \) | \(68 = 70 - \sqrt{\frac{ 8 }{ 2 }}\) |
\(69 = \sqrt{\sqrt{7^{8}}} + 20 \) | \(70 = ( 0 + 2 + 8 ) \cdot 7 \) | \(71 = 72 - 8^{0 }\) | \(72 = 0 \cdot 8 + 72 \) |
\(73 = 8^{0} + 72 \) | \(74 = \frac{ 8 }{ 2 } + 70 \) | \(75 = 80 + 2 - 7 \) | \(76 = 7 \cdot 8 + 20 \) |
\(77 = 78 - 2^{0 }\) | \(78 = 0 \cdot 2 + 78 \) | \(79 = 2^{0} + 78 \) | \(80 = 70 + 2 + 8 \) |
\(81 = 82 - 7^{0 }\) | \(82 = 0 \cdot 7 + 82 \) | \(83 = 7^{0} + 82 \) | \(84 = ( 20 - 8 ) \cdot 7 \) |
\(85 = 80 - 2 + 7 \) | \(86 = 2 \cdot 8 + 70 \) | \(87 = 0 \cdot 2 + 87 \) | \(88 = 2^{0} + 87 \) |
\(89 = 80 + 2 + 7 \) | \(90 = \frac{ 720 }{ 8 }\) | \(91 = \frac{ \sqrt{2 + 7}!! }{ 8 } + 0 !\) | \(92 = \frac{ ( 7 - 0! )! }{ 8 } + 2 \) |
\(93 = ( 0! + 2 )! + 87 \) | \(94 = 2 \cdot 7 + 80 \) | \(95 = \sqrt{0! + 7!} + ( \frac{ 8 }{ 2 } )!\) | \(96 = ( 7 - 0! ) \cdot 2 \cdot 8 \) |
\(97 = \frac{ ( 0! + 2 )!! }{ 8 } + 7 \) | \(98 = 20 + 78 \) | \(99 = \sqrt{0! + 7!} + 28 \) | \(100 = \sqrt{2 \cdot 7! - 80 }\) |