\(1 = ( 277 \cdot 0 )!\) | \(2 = 72 - 70 \) | \(3 = 77^{0} + 2 \) | \(4 = \frac{ 27 + 0! }{ 7 }\) |
\(5 = \frac{ \frac{ 70 }{ 2 } }{ 7 }\) | \(6 = 20 - 7 - 7 \) | \(7 = \frac{ 7! }{ 720 }\) | \(8 = 27^{0} + 7 \) |
\(9 = \frac{ 72 }{ 0! + 7 }\) | \(10 = \frac{ \sqrt{70^{2}} }{ 7 }\) | \(11 = 7 - ( 0! + 2 ) + 7 \) | \(12 = \frac{ 70 }{ 7 } + 2 \) |
\(13 = 20 - \sqrt{7 \cdot 7 }\) | \(14 = \frac{ 70 }{ 7 - 2 }\) | \(15 = 2^{0} + 7 + 7 \) | \(16 = 0 + 2 + 7 + 7 \) |
\(17 = 0! + 2 + 7 + 7 \) | \(18 = ( 7 - 0! ) \cdot \sqrt{2 + 7 }\) | \(19 = 20 - \frac{ 7 }{ 7 }\) | \(20 = 20 - 7 + 7 \) |
\(21 = \frac{ 7 }{ 7 } + 20 \) | \(22 = 2 \cdot 7 + 0! + 7 \) | \(23 = ( 0! + 7 ) \cdot 2 + 7 \) | \(24 = ( \frac{ 27 + 0! }{ 7 } )!\) |
\(25 = \frac{ 7 \cdot 7 + 0! }{ 2 }\) | \(26 = 27 - 7^{0 }\) | \(27 = 0 \cdot 7 + 27 \) | \(28 = 7^{0} + 27 \) |
\(29 = 7 \cdot 7 - 20 \) | \(30 = ( 0! + 7 + 7 ) \cdot 2 \) | \(31 = ( 7 - ( 0! + 2 ) )! + 7 \) | \(32 = \sqrt{2^{\frac{ 70 }{ 7 }}}\) |
\(33 = 27 - 0! + 7 \) | \(34 = 20 + 7 + 7 \) | \(35 = 27 + 0! + 7 \) | \(36 = \frac{ 7! }{ 20 \cdot 7 }\) |
\(37 = ?\) | \(38 = \frac{ 77 - 0! }{ 2 }\) | \(39 = \frac{ 77 + 0! }{ 2 }\) | \(40 = ( 7 - 0! ) \cdot 7 - 2 \) |
\(41 = 7^{2} - 0! - 7 \) | \(42 = \frac{ 70 }{ 2 } + 7 \) | \(43 = 70 - 27 \) | \(44 = ( 7 - 0! ) \cdot 7 + 2 \) |
\(45 = ?\) | \(46 = 7 \cdot 7 - 0! - 2 \) | \(47 = ( 0 + 7 ) \cdot 7 - 2 \) | \(48 = 7 \cdot 7 - 2^{0 }\) |
\(49 = 7^{0 \cdot 7 + 2 }\) | \(50 = ( 7 - 2 )! - 70 \) | \(51 = ( 0 + 7 ) \cdot 7 + 2 \) | \(52 = 7 \cdot 7 + 0! + 2 \) |
\(53 = ?\) | \(54 = ( 0! + 7 ) \cdot 7 - 2 \) | \(55 = 7^{2} - 0! + 7 \) | \(56 = 70 - 2 \cdot 7 \) |
\(57 = 77 - 20 \) | \(58 = 2^{7} - 70 \) | \(59 = ?\) | \(60 = \sqrt{( 7 - 0! )! \cdot ( 7 - 2 )}\) |
\(61 = 70 - 2 - 7 \) | \(62 = ( 2 + 7 ) \cdot 7 - 0 !\) | \(63 = \sqrt{70^{2}} - 7 \) | \(64 = 72 - 0! - 7 \) |
\(65 = 70 + 2 - 7 \) | \(66 = 72 + 0! - 7 \) | \(67 = 70 - \sqrt{2 + 7 }\) | \(68 = \sqrt{0! + 7!} - \sqrt{2 + 7 }\) |
\(69 = 7 \cdot 7 + 20 \) | \(70 = \frac{ 7! }{ 70 + 2 }\) | \(71 = 72 - 7^{0 }\) | \(72 = 0 \cdot 7 + 72 \) |
\(73 = 7^{0} + 72 \) | \(74 = \frac{ 7! }{ 70 } + 2 \) | \(75 = 70 - 2 + 7 \) | \(76 = 77 - 2^{0 }\) |
\(77 = 0 \cdot 2 + 77 \) | \(78 = 2^{0} + 77 \) | \(79 = 70 + 2 + 7 \) | \(80 = 72 + 0! + 7 \) |
\(81 = \sqrt{\sqrt{2 + 7}^{0! + 7 }}\) | \(82 = ?\) | \(83 = ( 0! + 2 )! + 77 \) | \(84 = 2 \cdot 7 + 70 \) |
\(85 = \sqrt{0! + 7!} + 2 \cdot 7 \) | \(86 = ?\) | \(87 = ?\) | \(88 = ?\) |
\(89 = ?\) | \(90 = \frac{ \sqrt{2 + 7}!! }{ 0! + 7 }\) | \(91 = ( 20 - 7 ) \cdot 7 \) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = ?\) | \(96 = ( 7 \cdot 7 - 0! ) \cdot 2 \) |
\(97 = 20 + 77 \) | \(98 = ( 0 + 2 ) \cdot 7 \cdot 7 \) | \(99 = 2 \cdot 7 \cdot 7 + 0 !\) | \(100 = ( \frac{ 70 }{ 7 } )^{2 }\) |