\(1 = ( 257 \cdot 0 )!\) | \(2 = 57 \cdot 0 + 2 \) | \(3 = 7 - \frac{ 20 }{ 5 }\) | \(4 = 5 - 27^{0 }\) |
\(5 = 27 \cdot 0 + 5 \) | \(6 = \frac{ 720 }{ 5 ! }\) | \(7 = 25 \cdot 0 + 7 \) | \(8 = 20 - 5 - 7 \) |
\(9 = \sqrt{\frac{ 20 }{ 5 }} + 7 \) | \(10 = \frac{ 20 }{ 7 - 5 }\) | \(11 = \frac{ 20 }{ 5 } + 7 \) | \(12 = \sqrt{\frac{ 720 }{ 5 }}\) |
\(13 = \frac{ 5! }{ 20 } + 7 \) | \(14 = \frac{ 70 }{ \sqrt{25 } }\) | \(15 = 5 \cdot 7 - 20 \) | \(16 = \sqrt{257 - 0 !}\) |
\(17 = ( \frac{ 20 }{ 5 } )! - 7 \) | \(18 = 70 - 52 \) | \(19 = 25 + 0! - 7 \) | \(20 = \frac{ 20 + 5! }{ 7 }\) |
\(21 = 27 - 0! - 5 \) | \(22 = 72 - 50 \) | \(23 = 50 - 27 \) | \(24 = 25 - 7^{0 }\) |
\(25 = 0 \cdot 7 + 25 \) | \(26 = 7^{0} + 25 \) | \(27 = 0 \cdot 5 + 27 \) | \(28 = \frac{ 20 }{ 5 } \cdot 7 \) |
\(29 = \frac{ 57 + 0! }{ 2 }\) | \(30 = \frac{ 70 }{ 2 } - 5 \) | \(31 = ( \frac{ 20 }{ 5 } )! + 7 \) | \(32 = 20 + 5 + 7 \) |
\(33 = 25 + 0! + 7 \) | \(34 = 5 \cdot 7 - 2^{0 }\) | \(35 = \sqrt{20 + 5} \cdot 7 \) | \(36 = 50 - 2 \cdot 7 \) |
\(37 = 57 - 20 \) | \(38 = 70 - 2^{5 }\) | \(39 = ( 0 + 2 )^{5} + 7 \) | \(40 = ( 7 - 5 ) \cdot 20 \) |
\(41 = 50 - 2 - 7 \) | \(42 = \frac{ 5! }{ 20 } \cdot 7 \) | \(43 = \sqrt{50^{2}} - 7 \) | \(44 = 52 - 0! - 7 \) |
\(45 = 70 - 25 \) | \(46 = 52 + 0! - 7 \) | \(47 = 50 - \sqrt{2 + 7 }\) | \(48 = 5! - ( 70 + 2 )\) |
\(49 = 7^{\sqrt{\frac{ 20 }{ 5 }}}\) | \(50 = \sqrt{25}! - 70 \) | \(51 = 52 - 7^{0 }\) | \(52 = 0 \cdot 7 + 52 \) |
\(53 = 7^{0} + 52 \) | \(54 = \frac{ 270 }{ 5 }\) | \(55 = 75 - 20 \) | \(56 = 57 - 2^{0 }\) |
\(57 = 0 \cdot 2 + 57 \) | \(58 = 2^{0} + 57 \) | \(59 = 50 + 2 + 7 \) | \(60 = \sqrt{720 \cdot 5 }\) |
\(61 = 7^{0} + \frac{ 5! }{ 2 }\) | \(62 = \frac{ 7! }{ 5! } + 20 \) | \(63 = 70 - 2 - 5 \) | \(64 = 2 \cdot 7 + 50 \) |
\(65 = 70 - \sqrt{25 }\) | \(66 = 72 - 0! - 5 \) | \(67 = 70 + 2 - 5 \) | \(68 = 72 + 0! - 5 \) |
\(69 = 75 - ( 0! + 2 )!\) | \(70 = \sqrt{20 \cdot 5} \cdot 7 \) | \(71 = 72 - 5^{0 }\) | \(72 = 0 \cdot 5 + 72 \) |
\(73 = 70 - 2 + 5 \) | \(74 = 75 - 2^{0 }\) | \(75 = \sqrt{25} + 70 \) | \(76 = 2^{0} + 75 \) |
\(77 = 20 + 57 \) | \(78 = 2^{7} - 50 \) | \(79 = \sqrt{0! + 5!} \cdot 7 + 2 \) | \(80 = 2 \cdot 5 + 70 \) |
\(81 = ( 0! + 2 )! + 75 \) | \(82 = ( \frac{ 7! }{ 5! } - 0! ) \cdot 2 \) | \(83 = \sqrt{0! + 5!} + 72 \) | \(84 = ( 0! + 5 ) \cdot 2 \cdot 7 \) |
\(85 = 5! - \frac{ 70 }{ 2 }\) | \(86 = ( 50 - 7 ) \cdot 2 \) | \(87 = 207 - 5 !\) | \(88 = ?\) |
\(89 = ?\) | \(90 = \frac{ ( 5 - 2 )!! }{ 0! + 7 }\) | \(91 = ( \sqrt{0! + 5!} + 2 ) \cdot 7 \) | \(92 = 5! - ( 27 + 0 ! )\) |
\(93 = 20 \cdot 5 - 7 \) | \(94 = 5! - ( 27 - 0 ! )\) | \(95 = 20 + 75 \) | \(96 = ( 5 - 0! )! + 72 \) |
\(97 = ?\) | \(98 = 7^{\sqrt{5 - 0!}} \cdot 2 \) | \(99 = 7^{2} + 50 \) | \(100 = ( 5! - 70 ) \cdot 2 \) |