\(1 = ( 255 \cdot 0 )!\) | \(2 = \frac{ 50 }{ 25 }\) | \(3 = \frac{ 20 - 5 }{ 5 }\) | \(4 = 5 - 25^{0 }\) |
\(5 = \sqrt{50 - 25 }\) | \(6 = 25^{0} + 5 \) | \(7 = \sqrt{\frac{ 20 }{ 5 }} + 5 \) | \(8 = \frac{ 50 }{ 5 } - 2 \) |
\(9 = \frac{ 20 }{ 5 } + 5 \) | \(10 = \frac{ 50 }{ \sqrt{25 } }\) | \(11 = \frac{ 5! }{ 20 } + 5 \) | \(12 = \frac{ 50 }{ 5 } + 2 \) |
\(13 = \frac{ 52 }{ 5 - 0 ! }\) | \(14 = 2 \cdot 5 - 0! + 5 \) | \(15 = \sqrt{20 \cdot 5} + 5 \) | \(16 = \sqrt{255 + 0 !}\) |
\(17 = ( 0! + 5 ) \cdot 2 + 5 \) | \(18 = 50 - 2^{5 }\) | \(19 = 20 - \frac{ 5 }{ 5 }\) | \(20 = \frac{ 20 }{ 5 } \cdot 5 \) |
\(21 = \frac{ 5 }{ 5 } + 20 \) | \(22 = ( 5 - 5^{0} )! - 2 \) | \(23 = ( 0 + 5 ) \cdot 5 - 2 \) | \(24 = 25 - 5^{0 }\) |
\(25 = 50 - 25 \) | \(26 = 5^{0} + 25 \) | \(27 = \frac{ 55 - 0! }{ 2 }\) | \(28 = \frac{ 20 + 5! }{ 5 }\) |
\(29 = ( \frac{ 20 }{ 5 } )! + 5 \) | \(30 = 20 + 5 + 5 \) | \(31 = 25 + 0! + 5 \) | \(32 = \sqrt{\frac{ 20 }{ 5 }}^{5 }\) |
\(33 = 5^{0} + 2^{5 }\) | \(34 = ( 2 + 5 ) \cdot 5 - 0 !\) | \(35 = 55 - 20 \) | \(36 = ( 5^{0} + 5 )^{2 }\) |
\(37 = ( 0 + 2 )^{5} + 5 \) | \(38 = 2^{5} + 0! + 5 \) | \(39 = \frac{ 5! }{ 5 - 2 } - 0 !\) | \(40 = 50 - 2 \cdot 5 \) |
\(41 = \frac{ 205 }{ 5 }\) | \(42 = ( 0! + 5 ) \cdot ( 2 + 5 )\) | \(43 = 50 - 2 - 5 \) | \(44 = \frac{ 5! }{ 5 } + 20 \) |
\(45 = 50 - \sqrt{25 }\) | \(46 = 52 - 0! - 5 \) | \(47 = 50 + 2 - 5 \) | \(48 = 52 + 0! - 5 \) |
\(49 = ( 5 - 0! )! + 25 \) | \(50 = \frac{ 250 }{ 5 }\) | \(51 = 52 - 5^{0 }\) | \(52 = 0 \cdot 5 + 52 \) |
\(53 = 50 - 2 + 5 \) | \(54 = 55 - 2^{0 }\) | \(55 = \sqrt{25} + 50 \) | \(56 = 2^{0} + 55 \) |
\(57 = 50 + 2 + 5 \) | \(58 = 52 + 0! + 5 \) | \(59 = 2^{0! + 5} - 5 \) | \(60 = 2 \cdot 5 + 50 \) |
\(61 = ( 0! + 2 )! + 55 \) | \(62 = \frac{ 5 - 0! + 5! }{ 2 }\) | \(63 = \sqrt{0! + 5!} + 52 \) | \(64 = 2^{5^{0} + 5 }\) |
\(65 = \frac{ 5! }{ 0 + 2 } + 5 \) | \(66 = \frac{ 5! }{ 2 } + 0! + 5 \) | \(67 = 5! - ( 52 + 0 ! )\) | \(68 = 5! - ( 50 + 2 )\) |
\(69 = 5! - ( 52 - 0 ! )\) | \(70 = \sqrt{25}! - 50 \) | \(71 = \sqrt{5^{0} + ( 2 + 5 )!}\) | \(72 = 5! - ( 50 - 2 )\) |
\(73 = ?\) | \(74 = ?\) | \(75 = 20 + 55 \) | \(76 = ( 5 - 0! )! + 52 \) |
\(77 = \sqrt{0! + 5!} \cdot ( 2 + 5 )\) | \(78 = ?\) | \(79 = \sqrt{52 \cdot 5! + 0 !}\) | \(80 = ( 5 - 0! )^{2} \cdot 5 \) |
\(81 = ( 5 - 0! + 5 )^{2 }\) | \(82 = 2^{5} + 50 \) | \(83 = ?\) | \(84 = 5! - ( 0! + 5 )^{2 }\) |
\(85 = 205 - 5 !\) | \(86 = ?\) | \(87 = 5! - ( 2^{5} + 0 ! )\) | \(88 = 5! - ( 0 + 2 )^{5 }\) |
\(89 = 5! - ( 2^{5} - 0 ! )\) | \(90 = ( 50 - 5 ) \cdot 2 \) | \(91 = ?\) | \(92 = ?\) |
\(93 = ?\) | \(94 = 5! - ( 25 + 0 ! )\) | \(95 = 20 \cdot 5 - 5 \) | \(96 = 5! - ( \frac{ 20 }{ 5 } )!\) |
\(97 = ?\) | \(98 = 5! - ( ( 5 - 0! )! - 2 )\) | \(99 = ( 5 + 5 )^{2} - 0 !\) | \(100 = ( \frac{ 50 }{ 5 } )^{2 }\) |