0255

\(1 = ( 255 \cdot 0 )!\) \(2 = \frac{ 50 }{ 25 }\) \(3 = \frac{ 20 - 5 }{ 5 }\) \(4 = 5 - 25^{0 }\)
\(5 = \sqrt{50 - 25 }\) \(6 = 25^{0} + 5 \) \(7 = \sqrt{\frac{ 20 }{ 5 }} + 5 \) \(8 = \frac{ 50 }{ 5 } - 2 \)
\(9 = \frac{ 20 }{ 5 } + 5 \) \(10 = \frac{ 50 }{ \sqrt{25 } }\) \(11 = \frac{ 5! }{ 20 } + 5 \) \(12 = \frac{ 50 }{ 5 } + 2 \)
\(13 = \frac{ 52 }{ 5 - 0 ! }\) \(14 = 2 \cdot 5 - 0! + 5 \) \(15 = \sqrt{20 \cdot 5} + 5 \) \(16 = \sqrt{255 + 0 !}\)
\(17 = ( 0! + 5 ) \cdot 2 + 5 \) \(18 = 50 - 2^{5 }\) \(19 = 20 - \frac{ 5 }{ 5 }\) \(20 = \frac{ 20 }{ 5 } \cdot 5 \)
\(21 = \frac{ 5 }{ 5 } + 20 \) \(22 = ( 5 - 5^{0} )! - 2 \) \(23 = ( 0 + 5 ) \cdot 5 - 2 \) \(24 = 25 - 5^{0 }\)
\(25 = 50 - 25 \) \(26 = 5^{0} + 25 \) \(27 = \frac{ 55 - 0! }{ 2 }\) \(28 = \frac{ 20 + 5! }{ 5 }\)
\(29 = ( \frac{ 20 }{ 5 } )! + 5 \) \(30 = 20 + 5 + 5 \) \(31 = 25 + 0! + 5 \) \(32 = \sqrt{\frac{ 20 }{ 5 }}^{5 }\)
\(33 = 5^{0} + 2^{5 }\) \(34 = ( 2 + 5 ) \cdot 5 - 0 !\) \(35 = 55 - 20 \) \(36 = ( 5^{0} + 5 )^{2 }\)
\(37 = ( 0 + 2 )^{5} + 5 \) \(38 = 2^{5} + 0! + 5 \) \(39 = \frac{ 5! }{ 5 - 2 } - 0 !\) \(40 = 50 - 2 \cdot 5 \)
\(41 = \frac{ 205 }{ 5 }\) \(42 = ( 0! + 5 ) \cdot ( 2 + 5 )\) \(43 = 50 - 2 - 5 \) \(44 = \frac{ 5! }{ 5 } + 20 \)
\(45 = 50 - \sqrt{25 }\) \(46 = 52 - 0! - 5 \) \(47 = 50 + 2 - 5 \) \(48 = 52 + 0! - 5 \)
\(49 = ( 5 - 0! )! + 25 \) \(50 = \frac{ 250 }{ 5 }\) \(51 = 52 - 5^{0 }\) \(52 = 0 \cdot 5 + 52 \)
\(53 = 50 - 2 + 5 \) \(54 = 55 - 2^{0 }\) \(55 = \sqrt{25} + 50 \) \(56 = 2^{0} + 55 \)
\(57 = 50 + 2 + 5 \) \(58 = 52 + 0! + 5 \) \(59 = 2^{0! + 5} - 5 \) \(60 = 2 \cdot 5 + 50 \)
\(61 = ( 0! + 2 )! + 55 \) \(62 = \frac{ 5 - 0! + 5! }{ 2 }\) \(63 = \sqrt{0! + 5!} + 52 \) \(64 = 2^{5^{0} + 5 }\)
\(65 = \frac{ 5! }{ 0 + 2 } + 5 \) \(66 = \frac{ 5! }{ 2 } + 0! + 5 \) \(67 = 5! - ( 52 + 0 ! )\) \(68 = 5! - ( 50 + 2 )\)
\(69 = 5! - ( 52 - 0 ! )\) \(70 = \sqrt{25}! - 50 \) \(71 = \sqrt{5^{0} + ( 2 + 5 )!}\) \(72 = 5! - ( 50 - 2 )\)
\(73 = ?\) \(74 = ?\) \(75 = 20 + 55 \) \(76 = ( 5 - 0! )! + 52 \)
\(77 = \sqrt{0! + 5!} \cdot ( 2 + 5 )\) \(78 = ?\) \(79 = \sqrt{52 \cdot 5! + 0 !}\) \(80 = ( 5 - 0! )^{2} \cdot 5 \)
\(81 = ( 5 - 0! + 5 )^{2 }\) \(82 = 2^{5} + 50 \) \(83 = ?\) \(84 = 5! - ( 0! + 5 )^{2 }\)
\(85 = 205 - 5 !\) \(86 = ?\) \(87 = 5! - ( 2^{5} + 0 ! )\) \(88 = 5! - ( 0 + 2 )^{5 }\)
\(89 = 5! - ( 2^{5} - 0 ! )\) \(90 = ( 50 - 5 ) \cdot 2 \) \(91 = ?\) \(92 = ?\)
\(93 = ?\) \(94 = 5! - ( 25 + 0 ! )\) \(95 = 20 \cdot 5 - 5 \) \(96 = 5! - ( \frac{ 20 }{ 5 } )!\)
\(97 = ?\) \(98 = 5! - ( ( 5 - 0! )! - 2 )\) \(99 = ( 5 + 5 )^{2} - 0 !\) \(100 = ( \frac{ 50 }{ 5 } )^{2 }\)