\(1 = ( 229 \cdot 0 )!\) | \(2 = \frac{ 20 - 2 }{ 9 }\) | \(3 = \sqrt{29 - 20 }\) | \(4 = \frac{ 20 }{ 2 + \sqrt{9 } }\) |
\(5 = 9 - ( 0 + 2 + 2 )\) | \(6 = \sqrt{29 - 20 }!\) | \(7 = \sqrt{20 + 29 }\) | \(8 = 9 - 22^{0 }\) |
\(9 = 29 - 20 \) | \(10 = 22^{0} + 9 \) | \(11 = \sqrt{20^{2}} - 9 \) | \(12 = 20 - 2^{\sqrt{9 }}\) |
\(13 = 20 + 2 - 9 \) | \(14 = 20 - 2 \cdot \sqrt{9 }\) | \(15 = 20 - 2 - \sqrt{9 }\) | \(16 = ( 9 - 2^{0} ) \cdot 2 \) |
\(17 = 2 \cdot 9 - 2^{0 }\) | \(18 = ( 0 \cdot 2 + 2 ) \cdot 9 \) | \(19 = \frac{ 20 }{ 2 } + 9 \) | \(20 = ( \sqrt{9} - 2 ) \cdot 20 \) |
\(21 = 22 - 9^{0 }\) | \(22 = ( 20 - 9 ) \cdot 2 \) | \(23 = 9^{0} + 22 \) | \(24 = 20 - 2 + \sqrt{9 }!\) |
\(25 = 20 + 2 + \sqrt{9 }\) | \(26 = 2 \cdot \sqrt{9} + 20 \) | \(27 = 20 - 2 + 9 \) | \(28 = 29 - 2^{0 }\) |
\(29 = 0 \cdot 2 + 29 \) | \(30 = \sqrt{902 - 2 }\) | \(31 = 20 + 2 + 9 \) | \(32 = 22 + 0! + 9 \) |
\(33 = ( 0 + 2 + 2 )! + 9 \) | \(34 = ( 20 - \sqrt{9} ) \cdot 2 \) | \(35 = ( 0! + 2 )! + 29 \) | \(36 = ( 0 + 2 + 2 ) \cdot 9 \) |
\(37 = 20 \cdot 2 - \sqrt{9 }\) | \(38 = 2 \cdot 9 + 20 \) | \(39 = ( 0! + 2 )!^{2} + \sqrt{9 }\) | \(40 = ( 0! + 9 ) \cdot 2 \cdot 2 \) |
\(41 = \sqrt{\sqrt{2^{20}}} + 9 \) | \(42 = ( 0! + 2 )! \cdot ( 9 - 2 )\) | \(43 = \frac{ 90 }{ 2 } - 2 \) | \(44 = \frac{ 90 - 2 }{ 2 }\) |
\(45 = \sqrt{( \frac{ 90 }{ 2 } )^{2 }}\) | \(46 = \frac{ 90 + 2 }{ 2 }\) | \(47 = \sqrt{2209 }\) | \(48 = ( 9 - 2 )^{2} - 0 !\) |
\(49 = 20 + 29 \) | \(50 = \frac{ ( 0! + 9 )^{2} }{ 2 }\) | \(51 = ( 0! + \sqrt{9}! )^{2} + 2 \) | \(52 = ( 20 + \sqrt{9}! ) \cdot 2 \) |
\(53 = ?\) | \(54 = ( 20 - 2 ) \cdot \sqrt{9 }\) | \(55 = 2^{( 0! + 2 )!} - 9 \) | \(56 = ( 29 - 0! ) \cdot 2 \) |
\(57 = 29 \cdot 2 - 0 !\) | \(58 = ( 20 + 9 ) \cdot 2 \) | \(59 = 29 \cdot 2 + 0 !\) | \(60 = \sqrt{20^{2} \cdot 9 }\) |
\(61 = 9^{2} - 20 \) | \(62 = 20 \cdot \sqrt{9} + 2 \) | \(63 = ( 22 - 0! ) \cdot \sqrt{9 }\) | \(64 = ( 9 - 2^{0} )^{2 }\) |
\(65 = 22 \cdot \sqrt{9} - 0 !\) | \(66 = ( 20 + 2 ) \cdot \sqrt{9 }\) | \(67 = 22 \cdot \sqrt{9} + 0 !\) | \(68 = 90 - 22 \) |
\(69 = ( 22 + 0! ) \cdot \sqrt{9 }\) | \(70 = ( \sqrt{9}!^{2} - 0! ) \cdot 2 \) | \(71 = \sqrt{2^{0} + ( 9 - 2 )!}\) | \(72 = 92 - 20 \) |
\(73 = 2^{( 0! + 2 )!} + 9 \) | \(74 = ( \sqrt{9}!^{2} + 0! ) \cdot 2 \) | \(75 = 9^{2} - ( 0! + 2 )!\) | \(76 = ?\) |
\(77 = ?\) | \(78 = 9^{2} - 0! - 2 \) | \(79 = 9^{0 + 2} - 2 \) | \(80 = 9^{2} - 2^{0 }\) |
\(81 = 9^{0 \cdot 2 + 2 }\) | \(82 = 2^{0} + 9^{2 }\) | \(83 = 9^{0 + 2} + 2 \) | \(84 = 2^{\sqrt{9}!} + 20 \) |
\(85 = ?\) | \(86 = 90 - 2 - 2 \) | \(87 = ( 0! + 2 ) \cdot 29 \) | \(88 = \sqrt{( 90 - 2 )^{2 }}\) |
\(89 = 90 - \frac{ 2 }{ 2 }\) | \(90 = \frac{ 20 }{ 2 } \cdot 9 \) | \(91 = \frac{ 2 }{ 2 } + 90 \) | \(92 = 0 \cdot 2 + 92 \) |
\(93 = 2^{0} + 92 \) | \(94 = 90 + 2 + 2 \) | \(95 = 92 + 0! + 2 \) | \(96 = \sqrt{\sqrt{2^{20}} \cdot 9 }\) |
\(97 = ?\) | \(98 = ( 0! + 2 )! + 92 \) | \(99 = ?\) | \(100 = ( 2 + \sqrt{9} ) \cdot 20 \) |