\(1 = ( 227 \cdot 0 )!\) | \(2 = 27 \cdot 0 + 2 \) | \(3 = \frac{ 20 }{ 2 } - 7 \) | \(4 = \frac{ 20 }{ 7 - 2 }\) |
\(5 = \sqrt{20 - 2 + 7 }\) | \(6 = 20 - 2 \cdot 7 \) | \(7 = 27 - 20 \) | \(8 = 22^{0} + 7 \) |
\(9 = \frac{ 27 }{ 0! + 2 }\) | \(10 = \sqrt{( 7 - 2 ) \cdot 20 }\) | \(11 = 20 - 2 - 7 \) | \(12 = \sqrt{( 70 + 2 ) \cdot 2 }\) |
\(13 = \sqrt{20^{2}} - 7 \) | \(14 = 22 - 0! - 7 \) | \(15 = 20 + 2 - 7 \) | \(16 = 22 + 0! - 7 \) |
\(17 = \frac{ 20 }{ 2 } + 7 \) | \(18 = ( 0 + 2 + 7 ) \cdot 2 \) | \(19 = ( 0! + 2 ) \cdot 7 - 2 \) | \(20 = ( 0! + 2 + 7 ) \cdot 2 \) |
\(21 = 22 - 7^{0 }\) | \(22 = 0 \cdot 7 + 22 \) | \(23 = 7^{0} + 22 \) | \(24 = ( \frac{ 20 }{ 7 - 2 } )!\) |
\(25 = 20 - 2 + 7 \) | \(26 = ( 20 - 7 ) \cdot 2 \) | \(27 = 0 \cdot 2 + 27 \) | \(28 = 2^{0} + 27 \) |
\(29 = 20 + 2 + 7 \) | \(30 = 22 + 0! + 7 \) | \(31 = ( 0 + 2 + 2 )! + 7 \) | \(32 = 2^{7 - ( 0 + 2 )}\) |
\(33 = 20 \cdot 2 - 7 \) | \(34 = 2 \cdot 7 + 20 \) | \(35 = \sqrt{( \frac{ 70 }{ 2 } )^{2 }}\) | \(36 = \frac{ 70 + 2 }{ 2 }\) |
\(37 = \frac{ 70 }{ 2 } + 2 \) | \(38 = ( 7 - 0! )^{2} + 2 \) | \(39 = \sqrt{\sqrt{2^{20}}} + 7 \) | \(40 = ( 0! + 2 )! \cdot 7 - 2 \) |
\(41 = ?\) | \(42 = ( 2^{0} + 2 )! \cdot 7 \) | \(43 = ( 0! + 2 )!^{2} + 7 \) | \(44 = ( 0! + 2 )! \cdot 7 + 2 \) |
\(45 = ?\) | \(46 = 70 - ( 2 + 2 )!\) | \(47 = 20 + 27 \) | \(48 = 70 - 22 \) |
\(49 = 7^{0 \cdot 2 + 2 }\) | \(50 = 2^{0} + 7^{2 }\) | \(51 = 7^{0 + 2} + 2 \) | \(52 = 72 - 20 \) |
\(53 = 27 \cdot 2 - 0 !\) | \(54 = ( 20 + 7 ) \cdot 2 \) | \(55 = 27 \cdot 2 + 0 !\) | \(56 = ( 27 + 0! ) \cdot 2 \) |
\(57 = 2^{( 0! + 2 )!} - 7 \) | \(58 = ?\) | \(59 = \frac{ ( 7 - 2 )! }{ 2 } - 0 !\) | \(60 = \sqrt{2 + 7} \cdot 20 \) |
\(61 = \frac{ ( 7 - 2 )! }{ 2 } + 0 !\) | \(62 = 2^{7 - 0!} - 2 \) | \(63 = ( 0! + 2 )^{2} \cdot 7 \) | \(64 = 2^{7 - 2^{0 }}\) |
\(65 = \frac{ 2^{7} }{ 2 } + 0 !\) | \(66 = 70 - 2 - 2 \) | \(67 = \sqrt{0! + 7!} - 2 - 2 \) | \(68 = \sqrt{( 70 - 2 )^{2 }}\) |
\(69 = 7^{2} + 20 \) | \(70 = \frac{ 20 }{ 2 } \cdot 7 \) | \(71 = \frac{ 2 }{ 2 } + 70 \) | \(72 = 0 \cdot 2 + 72 \) |
\(73 = 2^{0} + 72 \) | \(74 = 70 + 2 + 2 \) | \(75 = 72 + 0! + 2 \) | \(76 = ?\) |
\(77 = ?\) | \(78 = ( 0! + 2 )! + 72 \) | \(79 = ?\) | \(80 = ( 2 + 7 )^{2} - 0 !\) |
\(81 = ( 0! + 2 ) \cdot 27 \) | \(82 = ( 2 + 7 )^{2} + 0 !\) | \(83 = ?\) | \(84 = ( 0! + 2 )! \cdot 2 \cdot 7 \) |
\(85 = ?\) | \(86 = ?\) | \(87 = ?\) | \(88 = ?\) |
\(89 = ?\) | \(90 = ?\) | \(91 = ?\) | \(92 = 20 + 72 \) |
\(93 = \sqrt{0! + 7!} + 22 \) | \(94 = ( 2 + 2 )! + 70 \) | \(95 = \sqrt{0! + 7!} + ( 2 + 2 )!\) | \(96 = ( 7^{2} - 0! ) \cdot 2 \) |
\(97 = 7^{2} \cdot 2 - 0 !\) | \(98 = 7^{0 + 2} \cdot 2 \) | \(99 = 7^{2} \cdot 2 + 0 !\) | \(100 = ( 7 - 2 ) \cdot 20 \) |