\(1 = ( 224 \cdot 0 )!\) | \(2 = \sqrt{24 - 20 }\) | \(3 = \frac{ 20 }{ 4 } - 2 \) | \(4 = 24 - 20 \) |
\(5 = 22^{0} + 4 \) | \(6 = \frac{ 20 }{ 2 } - 4 \) | \(7 = \frac{ 20 }{ 4 } + 2 \) | \(8 = \frac{ 20 - 4 }{ 2 }\) |
\(9 = \frac{ 20 - 2 }{ \sqrt{4 } }\) | \(10 = \frac{ 20 \cdot 2 }{ 4 }\) | \(11 = \frac{ 20 + 2 }{ \sqrt{4 } }\) | \(12 = \frac{ 20 + 4 }{ 2 }\) |
\(13 = \frac{ 24 }{ 2 } + 0 !\) | \(14 = \frac{ 20 }{ 2 } + 4 \) | \(15 = \sqrt{224 + 0 !}\) | \(16 = 20 - 2 - \sqrt{4 }\) |
\(17 = 22 - 0! - 4 \) | \(18 = 40 - 22 \) | \(19 = \frac{ 40 - 2 }{ 2 }\) | \(20 = \sqrt{402 - 2 }\) |
\(21 = 22 - 4^{0 }\) | \(22 = 42 - 20 \) | \(23 = 4^{0} + 22 \) | \(24 = ( 24 - 20 )!\) |
\(25 = ( \frac{ 20 }{ 4 } )^{2 }\) | \(26 = 20 + 2 + 4 \) | \(27 = 22 + 0! + 4 \) | \(28 = 2 \cdot 4 + 20 \) |
\(29 = 0! + 2 + 2 + 4 !\) | \(30 = ( 0! + 2 )! + 24 \) | \(31 = 2^{4} \cdot 2 - 0 !\) | \(32 = 2^{\frac{ 20 }{ 4 }}\) |
\(33 = 2^{4} \cdot 2 + 0 !\) | \(34 = \frac{ 20 }{ 2 } + 4 !\) | \(35 = ( 2 + 4 )^{2} - 0 !\) | \(36 = 20 \cdot 2 - 4 \) |
\(37 = ( 2 + 4 )^{2} + 0 !\) | \(38 = 20 \cdot 2 - \sqrt{4 }\) | \(39 = 40 - \frac{ 2 }{ 2 }\) | \(40 = \frac{ 20 }{ 2 } \cdot 4 \) |
\(41 = \frac{ 2 }{ 2 } + 40 \) | \(42 = 0 \cdot 2 + 42 \) | \(43 = 2^{0} + 42 \) | \(44 = 20 + 24 \) |
\(45 = 42 + 0! + 2 \) | \(46 = 20 + 2 + 4 !\) | \(47 = 24 \cdot 2 - 0 !\) | \(48 = ( 20 + 4 ) \cdot 2 \) |
\(49 = 24 \cdot 2 + 0 !\) | \(50 = ( 24 + 0! ) \cdot 2 \) | \(51 = 2 \cdot 4! + 0! + 2 \) | \(52 = ( 0 + 2 + 4! ) \cdot 2 \) |
\(53 = ( 2 + 4! ) \cdot 2 + 0 !\) | \(54 = ( 0! + 2 + 4! ) \cdot 2 \) | \(55 = \frac{ 220 }{ 4 }\) | \(56 = \sqrt{\sqrt{2^{20}}} + 4 !\) |
\(57 = ?\) | \(58 = \frac{ ( 0! + 4 )! }{ 2 } - 2 \) | \(59 = \frac{ ( 0! + 4 )! - 2 }{ 2 }\) | \(60 = \frac{ ( \frac{ 20 }{ 4 } )! }{ 2 }\) |
\(61 = \frac{ ( 0! + 4 )! + 2 }{ 2 }\) | \(62 = 20 + 42 \) | \(63 = 2^{2 + 4} - 0 !\) | \(64 = 20 \cdot 2 + 4 !\) |
\(65 = 2^{2 + 4} + 0 !\) | \(66 = ( 4 - 0! ) \cdot 22 \) | \(67 = \sqrt{\sqrt{2^{4!}}} + 0! + 2 \) | \(68 = 2 \cdot 4! + 20 \) |
\(69 = ?\) | \(70 = ( 0! + 2 ) \cdot 4! - 2 \) | \(71 = ?\) | \(72 = ( 20 - 2 ) \cdot 4 \) |
\(73 = ?\) | \(74 = ( 0! + 2 ) \cdot 4! + 2 \) | \(75 = ?\) | \(76 = ( 40 - 2 ) \cdot 2 \) |
\(77 = ?\) | \(78 = 20 \cdot 4 - 2 \) | \(79 = ( 0! + 2 )^{4} - 2 \) | \(80 = \sqrt{20^{2}} \cdot 4 \) |
\(81 = ( 2^{0} + 2 )^{4 }\) | \(82 = 20 \cdot 4 + 2 \) | \(83 = 42 \cdot 2 - 0 !\) | \(84 = ( 40 + 2 ) \cdot 2 \) |
\(85 = 42 \cdot 2 + 0 !\) | \(86 = ( 42 + 0! ) \cdot 2 \) | \(87 = 22 \cdot 4 - 0 !\) | \(88 = ( 20 + 2 ) \cdot 4 \) |
\(89 = 22 \cdot 4 + 0 !\) | \(90 = \frac{ \frac{ ( 0! + 2 )!! }{ 2 } }{ 4 }\) | \(91 = ?\) | \(92 = ( 22 + 0! ) \cdot 4 \) |
\(93 = ?\) | \(94 = ( 2 \cdot 4! - 0! ) \cdot 2 \) | \(95 = ( 2 + 2 ) \cdot 4! - 0 !\) | \(96 = ( 0 + 2 + 2 ) \cdot 4 !\) |
\(97 = ( 2 + 2 ) \cdot 4! + 0 !\) | \(98 = ( 0! + 4 )! - 22 \) | \(99 = ?\) | \(100 = \frac{ 20^{2} }{ 4 }\) |