\(1 = ( 178 \cdot 0 )!\) | \(2 = 78^{0} + 1 \) | \(3 = \sqrt{80 - 71 }\) | \(4 = \sqrt{17 - 8^{0 }}\) |
\(5 = 8 - ( 10 - 7 )\) | \(6 = 7 - 18^{0 }\) | \(7 = 8 - 17^{0 }\) | \(8 = 17 \cdot 0 + 8 \) |
\(9 = 80 - 71 \) | \(10 = ( 8 - 7 ) \cdot 10 \) | \(11 = 81 - 70 \) | \(12 = 18 + 0! - 7 \) |
\(13 = 7 - ( 0! + 1 ) + 8 \) | \(14 = ( 10 - 8 ) \cdot 7 \) | \(15 = 0 \cdot 1 + 7 + 8 \) | \(16 = 17 - 8^{0 }\) |
\(17 = 0 \cdot 8 + 17 \) | \(18 = 8^{0} + 17 \) | \(19 = 7^{0} + 18 \) | \(20 = \sqrt{0! + 8} + 17 \) |
\(21 = \sqrt{\sqrt{80 + 1}} \cdot 7 \) | \(22 = ( 0! + 1 ) \cdot 7 + 8 \) | \(23 = \sqrt{\frac{ 8! }{ 70 }} - 1 \) | \(24 = ( 10 - 7 ) \cdot 8 \) |
\(25 = 10 + 7 + 8 \) | \(26 = 17 + 0! + 8 \) | \(27 = \sqrt{\sqrt{\sqrt{81}}^{7 - 0 !}}\) | \(28 = \frac{ 7! }{ 180 }\) |
\(29 = \sqrt{\frac{ 7! }{ \sqrt{\sqrt{81}}! } + 0 !}\) | \(30 = ( 0! + 1 ) \cdot ( 7 + 8 )\) | \(31 = ( \frac{ 8 }{ 0! + 1 } )! + 7 \) | \(32 = \sqrt{17 - 0!} \cdot 8 \) |
\(33 = ?\) | \(34 = ?\) | \(35 = ( \sqrt{\sqrt{81}}! - 0! ) \cdot 7 \) | \(36 = \sqrt{\sqrt{( 10 - 7 )!^{8 }}}\) |
\(37 = \sqrt{\sqrt{( 7 - 0! )^{8}}} + 1 \) | \(38 = ?\) | \(39 = \frac{ 78 }{ 0! + 1 }\) | \(40 = \frac{ ( 7 - 0! )! }{ 18 }\) |
\(41 = 7^{0! + 1} - 8 \) | \(42 = ( 8 - ( 0! + 1 ) ) \cdot 7 \) | \(43 = \sqrt{\sqrt{81}}! \cdot 7 + 0 !\) | \(44 = ?\) |
\(45 = ?\) | \(46 = 7 \cdot 8 - 10 \) | \(47 = ( 7 - 0! ) \cdot 8 - 1 \) | \(48 = ( 10 - 7 )! \cdot 8 \) |
\(49 = 7^{10 - 8 }\) | \(50 = ( 8 - 0! ) \cdot 7 + 1 \) | \(51 = \sqrt{0! + 8} \cdot 17 \) | \(52 = 70 - 18 \) |
\(53 = \sqrt{0! + 7!} - 18 \) | \(54 = ( 7 - 0! ) \cdot \sqrt{81 }\) | \(55 = ( 0 + 7 ) \cdot 8 - 1 \) | \(56 = ( 0 \cdot 1 + 7 ) \cdot 8 \) |
\(57 = ( 0 + 7 ) \cdot 8 + 1 \) | \(58 = 7 \cdot 8 + 0! + 1 \) | \(59 = \sqrt{\sqrt{7^{8}}} + 10 \) | \(60 = ?\) |
\(61 = 70 - \sqrt{81 }\) | \(62 = 10 \cdot 7 - 8 \) | \(63 = 80 - 17 \) | \(64 = 71 + 0! - 8 \) |
\(65 = ( 0! + 7 ) \cdot 8 + 1 \) | \(66 = 7 \cdot 8 + 10 \) | \(67 = 70 - \sqrt{\sqrt{81 }}\) | \(68 = 78 - 10 \) |
\(69 = 70 - 1^{8 }\) | \(70 = 1^{8} \cdot 70 \) | \(71 = 1^{8} + 70 \) | \(72 = 8^{0} + 71 \) |
\(73 = 10 \cdot 8 - 7 \) | \(74 = 80 + 1 - 7 \) | \(75 = 81 + 0! - 7 \) | \(76 = 78 - 0! - 1 \) |
\(77 = 87 - 10 \) | \(78 = 10 \cdot 7 + 8 \) | \(79 = 70 + \sqrt{81 }\) | \(80 = 1^{7} \cdot 80 \) |
\(81 = 1^{7} + 80 \) | \(82 = 7^{0} + 81 \) | \(83 = ?\) | \(84 = ?\) |
\(85 = 87 - 0! - 1 \) | \(86 = 80 - 1 + 7 \) | \(87 = 10 \cdot 8 + 7 \) | \(88 = 10 + 78 \) |
\(89 = 81 + 0! + 7 \) | \(90 = \frac{ ( 10 - 7 )!! }{ 8 }\) | \(91 = \frac{ ( 7 - 0! )! }{ 8 } + 1 \) | \(92 = ?\) |
\(93 = \sqrt{\sqrt{10^{8}}} - 7 \) | \(94 = ?\) | \(95 = ?\) | \(96 = ?\) |
\(97 = 10 + 87 \) | \(98 = ( 0! + 1 ) \cdot \sqrt{\sqrt{7^{8 }}}\) | \(99 = 107 - 8 \) | \(100 = \sqrt{\sqrt{10^{\frac{ 8! }{ 7 ! }}}}\) |