\(1 = ( 158 \cdot 0 )!\) | \(2 = 58^{0} + 1 \) | \(3 = 8 - ( 10 - 5 )\) | \(4 = \frac{ 8 }{ \frac{ 10 }{ 5 } }\) |
\(5 = 18 \cdot 0 + 5 \) | \(6 = \sqrt{\frac{ 180 }{ 5 }}\) | \(7 = 10 + 5 - 8 \) | \(8 = 15 \cdot 0 + 8 \) |
\(9 = 15^{0} + 8 \) | \(10 = \frac{ 10 }{ 5 } + 8 \) | \(11 = \sqrt{15 \cdot 8 + 0 !}\) | \(12 = 5! - 108 \) |
\(13 = 10 - 5 + 8 \) | \(14 = 15 - 8^{0 }\) | \(15 = 0 \cdot 8 + 15 \) | \(16 = \frac{ 10 }{ 5 } \cdot 8 \) |
\(17 = 18 - 5^{0 }\) | \(18 = 0 \cdot 5 + 18 \) | \(19 = 5^{0} + 18 \) | \(20 = \frac{ 80 }{ 5 - 1 }\) |
\(21 = \sqrt{50 \cdot 8} + 1 \) | \(22 = 15 - 0! + 8 \) | \(23 = 10 + 5 + 8 \) | \(24 = ( \frac{ 8 }{ \frac{ 10 }{ 5 } } )!\) |
\(25 = 5^{10 - 8 }\) | \(26 = ( 0! + 1 ) \cdot ( 5 + 8 )\) | \(27 = ( 5 - 0! )! + \sqrt{\sqrt{81 }}\) | \(28 = ( 5 - 0! ) \cdot ( 8 - 1 )\) |
\(29 = 80 - 51 \) | \(30 = \sqrt{180 \cdot 5 }\) | \(31 = 81 - 50 \) | \(32 = 50 - 18 \) |
\(33 = 5^{0! + 1} + 8 \) | \(34 = ( 8 - 0! ) \cdot 5 - 1 \) | \(35 = ( 8 - ( 0 + 1 ) ) \cdot 5 \) | \(36 = \frac{ 180 }{ 5 }\) |
\(37 = \sqrt{\sqrt{( 0! + 5 )^{8}}} + 1 \) | \(38 = 5! - ( 81 + 0 ! )\) | \(39 = 5! - ( 80 + 1 )\) | \(40 = ( 10 - 5 ) \cdot 8 \) |
\(41 = 50 - \sqrt{81 }\) | \(42 = 10 \cdot 5 - 8 \) | \(43 = 50 + 1 - 8 \) | \(44 = 51 + 0! - 8 \) |
\(45 = \sqrt{80 + 1} \cdot 5 \) | \(46 = \sqrt{81} \cdot 5 + 0 !\) | \(47 = 50 - \sqrt{\sqrt{81 }}\) | \(48 = 58 - 10 \) |
\(49 = 50 - 1^{8 }\) | \(50 = 5 \cdot 8 + 10 \) | \(51 = 1^{8} + 50 \) | \(52 = 8^{0} + 51 \) |
\(53 = 50 + \sqrt{\sqrt{81 }}\) | \(54 = \sqrt{0! + 8} + 51 \) | \(55 = \frac{ 8! }{ ( 0! + 5 )! } - 1 \) | \(56 = \sqrt{50 - 1} \cdot 8 \) |
\(57 = 50 - 1 + 8 \) | \(58 = 10 \cdot 5 + 8 \) | \(59 = 50 + \sqrt{81 }\) | \(60 = 180 - 5 !\) |
\(61 = \sqrt{\sqrt{\sqrt{81}}!! \cdot 5} + 0 !\) | \(62 = ?\) | \(63 = 8^{\sqrt{5 - 0!}} - 1 \) | \(64 = 8^{\frac{ 10 }{ 5 }}\) |
\(65 = 80 - 15 \) | \(66 = \sqrt{( 8 - 0! )! + 1} - 5 \) | \(67 = ?\) | \(68 = 10 + 58 \) |
\(69 = 80 - \sqrt{1 + 5 !}\) | \(70 = 81 - \sqrt{0! + 5 !}\) | \(71 = \sqrt{( 15 - 8 )! + 0 !}\) | \(72 = ( 5 - 0! ) \cdot 18 \) |
\(73 = ?\) | \(74 = 80 - 1 - 5 \) | \(75 = 85 - 10 \) | \(76 = 80 + 1 - 5 \) |
\(77 = 81 + 0! - 5 \) | \(78 = 80 - \sqrt{5 - 1 }\) | \(79 = 80 - 1^{5 }\) | \(80 = 1^{5} \cdot 80 \) |
\(81 = 1^{5} + 80 \) | \(82 = 5^{0} + 81 \) | \(83 = 85 - 0! - 1 \) | \(84 = 80 - 1 + 5 \) |
\(85 = 10 \cdot 8 + 5 \) | \(86 = 80 + 1 + 5 \) | \(87 = 81 + 0! + 5 \) | \(88 = \sqrt{0 + 1 + 5!} \cdot 8 \) |
\(89 = 18 \cdot 5 - 0 !\) | \(90 = ( 10 + 8 ) \cdot 5 \) | \(91 = 18 \cdot 5 + 0 !\) | \(92 = \sqrt{0! + 5!} + 81 \) |
\(93 = ?\) | \(94 = ?\) | \(95 = 10 + 85 \) | \(96 = \frac{ 5! }{ 10 } \cdot 8 \) |
\(97 = 105 - 8 \) | \(98 = ?\) | \(99 = \sqrt{( 0! + 5! ) \cdot 81 }\) | \(100 = \sqrt{\sqrt{( ( 0! + 1 ) \cdot 5 )^{8 }}}\) |