0155

\(1 = 51 - 50 \) \(2 = 55^{0} + 1 \) \(3 = 5 - \frac{ 10 }{ 5 }\) \(4 = 5 - 15^{0 }\)
\(5 = 15 \cdot 0 + 5 \) \(6 = 15^{0} + 5 \) \(7 = \frac{ 10 }{ 5 } + 5 \) \(8 = \frac{ 5! }{ 10 + 5 }\)
\(9 = 10 - \frac{ 5 }{ 5 }\) \(10 = \sqrt{105 - 5 }\) \(11 = \frac{ 5 }{ 5 } + 10 \) \(12 = \sqrt{50 - 1} + 5 \)
\(13 = 15 - \sqrt{5 - 0 !}\) \(14 = 15 - 5^{0 }\) \(15 = 5! - 105 \) \(16 = 5^{0} + 15 \)
\(17 = \frac{ 5! }{ 10 } + 5 \) \(18 = ( 5 - 0! )! - 1 - 5 \) \(19 = 15 - 0! + 5 \) \(20 = 10 + 5 + 5 \)
\(21 = \frac{ 105 }{ 5 }\) \(22 = \frac{ 5! - 10 }{ 5 }\) \(23 = ( 5 - 5^{0} )! - 1 \) \(24 = \frac{ 5! }{ 10 - 5 }\)
\(25 = 5^{\frac{ 10 }{ 5 }}\) \(26 = \frac{ 10 + 5! }{ 5 }\) \(27 = 51 - ( 5 - 0 ! )!\) \(28 = ( 5 - 0! )! - 1 + 5 \)
\(29 = ( 5 - ( 0 + 1 ) )! + 5 \) \(30 = \frac{ 150 }{ 5 }\) \(31 = ( 0! + 5 ) \cdot 5 + 1 \) \(32 = ( \frac{ 10 }{ 5 } )^{5 }\)
\(33 = \sqrt{5 - 0!}^{5} + 1 \) \(34 = \frac{ 5! }{ 5 } + 10 \) \(35 = 50 - 15 \) \(36 = ( 0! + 5 ) \cdot ( 1 + 5 )\)
\(37 = ( 0! + 1 )^{5} + 5 \) \(38 = ?\) \(39 = ( 5 - 0! )! + 15 \) \(40 = 51 - \sqrt{0! + 5 !}\)
\(41 = ?\) \(42 = \frac{ \sqrt{50 - 1}! }{ 5 ! }\) \(43 = ?\) \(44 = 50 - 1 - 5 \)
\(45 = 55 - 10 \) \(46 = 50 + 1 - 5 \) \(47 = 51 + 0! - 5 \) \(48 = 50 - \sqrt{5 - 1 }\)
\(49 = 50 - 1^{5 }\) \(50 = 1^{5} \cdot 50 \) \(51 = 1^{5} + 50 \) \(52 = 5^{0} + 51 \)
\(53 = 55 - 0! - 1 \) \(54 = 50 - 1 + 5 \) \(55 = 10 \cdot 5 + 5 \) \(56 = 50 + 1 + 5 \)
\(57 = 51 + 0! + 5 \) \(58 = ?\) \(59 = \frac{ 5! }{ \sqrt{5 - 0!} } - 1 \) \(60 = \frac{ 5! }{ \frac{ 10 }{ 5 } }\)
\(61 = \sqrt{1 + 5!} + 50 \) \(62 = \sqrt{0! + 5!} + 51 \) \(63 = ?\) \(64 = \sqrt{5 - 0!}^{1 + 5 }\)
\(65 = 10 + 55 \) \(66 = ( 0! + 5 ) \cdot \sqrt{1 + 5 !}\) \(67 = ?\) \(68 = 5! - ( 51 + 0 ! )\)
\(69 = 5! - ( 50 + 1 )\) \(70 = 5! - 10 \cdot 5 \) \(71 = 5! - ( 50 - 1 )\) \(72 = ?\)
\(73 = ?\) \(74 = 15 \cdot 5 - 0 !\) \(75 = ( 10 + 5 ) \cdot 5 \) \(76 = 15 \cdot 5 + 0 !\)
\(77 = ?\) \(78 = ?\) \(79 = ?\) \(80 = ( 15 + 0! ) \cdot 5 \)
\(81 = ?\) \(82 = ?\) \(83 = ?\) \(84 = ?\)
\(85 = ?\) \(86 = ?\) \(87 = ?\) \(88 = 5! - ( 0! + 1 )^{5 }\)
\(89 = ?\) \(90 = ( 0! + 5 ) \cdot 15 \) \(91 = ?\) \(92 = ?\)
\(93 = ?\) \(94 = ?\) \(95 = 5! - 5^{0! + 1 }\) \(96 = 5! - ( 5 - ( 0 + 1 ) )!\)
\(97 = 5! - ( ( 5 - 0! )! - 1 )\) \(98 = ?\) \(99 = ?\) \(100 = 105 - 5 \)