\(1 = 41 - 40 \) | \(2 = 10 - 4 - 4 \) | \(3 = 4 - 14^{0 }\) | \(4 = 14 \cdot 0 + 4 \) |
\(5 = 14^{0} + 4 \) | \(6 = 4 \cdot 4 - 10 \) | \(7 = \frac{ 10 + 4 }{ \sqrt{4 } }\) | \(8 = \frac{ 40 }{ 1 + 4 }\) |
\(9 = \sqrt{40 + 41 }\) | \(10 = \sqrt{104 - 4 }\) | \(11 = \frac{ 4 }{ 4 } + 10 \) | \(12 = \sqrt{140 + 4 }\) |
\(13 = 14 - 4^{0 }\) | \(14 = 0 \cdot 4 + 14 \) | \(15 = 4^{0} + 14 \) | \(16 = 10 + \sqrt{4} + 4 \) |
\(17 = 14 - 0! + 4 \) | \(18 = 10 + 4 + 4 \) | \(19 = 14 + 0! + 4 \) | \(20 = \sqrt{441} - 0 !\) |
\(21 = \sqrt{440 + 1 }\) | \(22 = \sqrt{441} + 0 !\) | \(23 = 4! - 14^{0 }\) | \(24 = ( 10 - 4 ) \cdot 4 \) |
\(25 = \frac{ 10^{\sqrt{4}} }{ 4 }\) | \(26 = \frac{ 104 }{ 4 }\) | \(27 = 14 \cdot \sqrt{4} - 0 !\) | \(28 = ( 10 + 4 ) \cdot \sqrt{4 }\) |
\(29 = \frac{ 10 }{ \sqrt{4} } + 4 !\) | \(30 = 10 - 4 + 4 !\) | \(31 = \sqrt{40 \cdot 4! + 1 }\) | \(32 = ( 10 - \sqrt{4} ) \cdot 4 \) |
\(33 = \sqrt{4}^{0! + 4} + 1 \) | \(34 = 44 - 10 \) | \(35 = \frac{ 140 }{ 4 }\) | \(36 = 10 \cdot 4 - 4 \) |
\(37 = 40 + 1 - 4 \) | \(38 = 10 + 4 + 4 !\) | \(39 = 40 - 1^{4 }\) | \(40 = 1^{4} \cdot 40 \) |
\(41 = 1^{4} + 40 \) | \(42 = 4^{0} + 41 \) | \(43 = 40 - 1 + 4 \) | \(44 = 10 \cdot 4 + 4 \) |
\(45 = 40 + 1 + 4 \) | \(46 = ( 4 - 1 )! + 40 \) | \(47 = ( 4 - 0! )! + 41 \) | \(48 = ( 10 + \sqrt{4} ) \cdot 4 \) |
\(49 = 0 + 1 + 4! + 4 !\) | \(50 = \sqrt{\frac{ 10^{4} }{ 4 }}\) | \(51 = ( 0! + 4! ) \cdot \sqrt{4} + 1 \) | \(52 = \frac{ 104 }{ \sqrt{4 } }\) |
\(53 = ?\) | \(54 = 10 + 44 \) | \(55 = 14 \cdot 4 - 0 !\) | \(56 = ( 10 + 4 ) \cdot 4 \) |
\(57 = 14 \cdot 4 + 0 !\) | \(58 = 10 + 4! + 4 !\) | \(59 = \frac{ ( 0! + 4 )! }{ \sqrt{4} } - 1 \) | \(60 = \frac{ 10 \cdot 4! }{ 4 }\) |
\(61 = \frac{ ( 0! + 4 )! }{ \sqrt{4} } + 1 \) | \(62 = \sqrt{\sqrt{( 0! + 1 )^{4!}}} - \sqrt{4 }\) | \(63 = 40 - 1 + 4 !\) | \(64 = \sqrt{4}^{10 - 4 }\) |
\(65 = 40 + 1 + 4 !\) | \(66 = 41 + 0! + 4 !\) | \(67 = ?\) | \(68 = ( 10 + 4! ) \cdot \sqrt{4 }\) |
\(69 = ( 4 - 0! ) \cdot ( 4! - 1 )\) | \(70 = \frac{ 140 }{ \sqrt{4 } }\) | \(71 = ( 4 - 0! ) \cdot 4! - 1 \) | \(72 = \frac{ ( \sqrt{4} + 4 )! }{ 10 }\) |
\(73 = ( 4 - 0! ) \cdot 4! + 1 \) | \(74 = \sqrt{\sqrt{\sqrt{4}^{4!}}} + 10 \) | \(75 = ( 4 - 0! ) \cdot ( 1 + 4 ! )\) | \(76 = 10^{\sqrt{4}} - 4 !\) |
\(77 = ?\) | \(78 = ( 40 - 1 ) \cdot \sqrt{4 }\) | \(79 = 40 \cdot \sqrt{4} - 1 \) | \(80 = 104 - 4 !\) |
\(81 = 40 + 41 \) | \(82 = ( 40 + 1 ) \cdot \sqrt{4 }\) | \(83 = 41 \cdot \sqrt{4} + 0 !\) | \(84 = ( 4 - 0! )! \cdot 14 \) |
\(85 = ?\) | \(86 = 4 \cdot 4! - 10 \) | \(87 = ?\) | \(88 = ( 0! + 1 ) \cdot 44 \) |
\(89 = ?\) | \(90 = ?\) | \(91 = ( 4! - 0! ) \cdot 4 - 1 \) | \(92 = ( 4! - ( 0 + 1 ) ) \cdot 4 \) |
\(93 = ( 4! - 0! ) \cdot 4 + 1 \) | \(94 = 4 \cdot 4! - 0! - 1 \) | \(95 = ( 0 + 4 ) \cdot 4! - 1 \) | \(96 = 10^{\sqrt{4}} - 4 \) |
\(97 = ( 0 + 4 ) \cdot 4! + 1 \) | \(98 = 10^{\sqrt{4}} - \sqrt{4 }\) | \(99 = ( 0! + 4! ) \cdot 4 - 1 \) | \(100 = 104 - 4 \) |