\(1 = ( 139 \cdot 0 )!\) | \(2 = 9 - ( 10 - 3 )\) | \(3 = ( 10 - 9 ) \cdot 3 \) | \(4 = 10 + 3 - 9 \) |
\(5 = 9 - ( 10 - 3 ! )\) | \(6 = ( ( 10 - 9 ) \cdot 3 )!\) | \(7 = \sqrt{10 + 39 }\) | \(8 = 9 - 13^{0 }\) |
\(9 = 13 \cdot 0 + 9 \) | \(10 = 13^{0} + 9 \) | \(11 = 30 - 19 \) | \(12 = 13 - 9^{0 }\) |
\(13 = \frac{ 9 }{ 3 } + 10 \) | \(14 = 9^{0} + 13 \) | \(15 = \frac{ 10 \cdot 9 }{ 3 ! }\) | \(16 = 10 - 3 + 9 \) |
\(17 = 3 \cdot 9 - 10 \) | \(18 = 19 - 3^{0 }\) | \(19 = 0 \cdot 3 + 19 \) | \(20 = 3^{0} + 19 \) |
\(21 = 10 \cdot 3 - 9 \) | \(22 = 10 + 3 + 9 \) | \(23 = 13 + 0! + 9 \) | \(24 = ( 10 + 3 - 9 )!\) |
\(25 = 10 + 3! + 9 \) | \(26 = 30 - 1 - \sqrt{9 }\) | \(27 = 10 \cdot 3 - \sqrt{9 }\) | \(28 = 30 + 1 - \sqrt{9 }\) |
\(29 = 39 - 10 \) | \(30 = \frac{ 10 \cdot 9 }{ 3 }\) | \(31 = 1^{9} + 30 \) | \(32 = 9^{0} + 31 \) |
\(33 = 10 \cdot 3 + \sqrt{9 }\) | \(34 = 30 + 1 + \sqrt{9 }\) | \(35 = 30 - 1 + \sqrt{9 }!\) | \(36 = ( 10 - 3! ) \cdot 9 \) |
\(37 = 3 \cdot 9 + 10 \) | \(38 = 30 - 1 + 9 \) | \(39 = 10 \cdot 3 + 9 \) | \(40 = 30 + 1 + 9 \) |
\(41 = 31 + 0! + 9 \) | \(42 = ( 10 - 3 ) \cdot \sqrt{9 }!\) | \(43 = ( 0! + 3 )! + 19 \) | \(44 = 3! \cdot 9 - 10 \) |
\(45 = \frac{ 90 }{ 3 - 1 }\) | \(46 = 3! \cdot \sqrt{9}! + 10 \) | \(47 = ( 9 - 0! ) \cdot 3! - 1 \) | \(48 = ( 10 + 3! ) \cdot \sqrt{9 }\) |
\(49 = 10 + 39 \) | \(50 = ( 3! - 0! ) \cdot ( 1 + 9 )\) | \(51 = 10 \cdot 3! - 9 \) | \(52 = ( 0! + \sqrt{9} ) \cdot 13 \) |
\(53 = ( 0 + 3 )! \cdot 9 - 1 \) | \(54 = ( 19 - 0! ) \cdot 3 \) | \(55 = ( 0 + 3 )! \cdot 9 + 1 \) | \(56 = 19 \cdot 3 - 0 !\) |
\(57 = ( 10 + 9 ) \cdot 3 \) | \(58 = 19 \cdot 3 + 0 !\) | \(59 = 90 - 31 \) | \(60 = ( 9 - 3 ) \cdot 10 \) |
\(61 = 91 - 30 \) | \(62 = ( \sqrt{9} - 0! ) \cdot 31 \) | \(63 = ( 10 - 3 ) \cdot 9 \) | \(64 = 3! \cdot 9 + 10 \) |
\(65 = ( \sqrt{9}! - 0! ) \cdot 13 \) | \(66 = 90 - ( 1 + 3 )!\) | \(67 = 91 - ( 0! + 3 )!\) | \(68 = \sqrt{( 0! + 3! )! + 1} - \sqrt{9 }\) |
\(69 = 10 \cdot 3! + 9 \) | \(70 = \frac{ 3!! }{ 9 } - 10 \) | \(71 = \sqrt{( 9 - ( 3 - 0! ) )! + 1 }\) | \(72 = \frac{ ( 9 - 3 )! }{ 10 }\) |
\(73 = ( 0! + 1 )^{3!} + 9 \) | \(74 = \sqrt{( 0! + 3! )! + 1} + \sqrt{9 }\) | \(75 = \frac{ 3!! }{ 10 } + \sqrt{9 }\) | \(76 = ( 0! + 3 ) \cdot 19 \) |
\(77 = 90 - 13 \) | \(78 = ( 0! + 1 ) \cdot 39 \) | \(79 = 13 \cdot \sqrt{9}! + 0 !\) | \(80 = 9^{3 - 0!} - 1 \) |
\(81 = \sqrt{\frac{ 3^{10} }{ 9 }}\) | \(82 = 9^{3 - 0!} + 1 \) | \(83 = 93 - 10 \) | \(84 = 10 \cdot 9 - 3 !\) |
\(85 = 90 + 1 - 3 !\) | \(86 = 90 - 1 - 3 \) | \(87 = 10 \cdot 9 - 3 \) | \(88 = 90 + 1 - 3 \) |
\(89 = 90 - 1^{3 }\) | \(90 = 1^{3} \cdot 90 \) | \(91 = 1^{3} + 90 \) | \(92 = 90 - 1 + 3 \) |
\(93 = 10 \cdot 9 + 3 \) | \(94 = 103 - 9 \) | \(95 = 90 - 1 + 3 !\) | \(96 = 10 \cdot 9 + 3 !\) |
\(97 = 103 - \sqrt{9 }!\) | \(98 = 91 + 0! + 3 !\) | \(99 = \sqrt{( 3! - 0! )! + 1} \cdot 9 \) | \(100 = 103 - \sqrt{9 }\) |