\(1 = 20 - 19 \) | \(2 = ( 10 - 9 ) \cdot 2 \) | \(3 = 10 + 2 - 9 \) | \(4 = 9 - \frac{ 10 }{ 2 }\) |
\(5 = 10 - 2 - \sqrt{9 }\) | \(6 = ( 10 + 2 - 9 )!\) | \(7 = \frac{ 20 + 1 }{ \sqrt{9 } }\) | \(8 = 2 \cdot 9 - 10 \) |
\(9 = 12 \cdot 0 + 9 \) | \(10 = 12^{0} + 9 \) | \(11 = 10 \cdot 2 - 9 \) | \(12 = 0 \cdot 9 + 12 \) |
\(13 = 9^{0} + 12 \) | \(14 = \frac{ 10 }{ 2 } + 9 \) | \(15 = \frac{ 10 }{ 2 } \cdot \sqrt{9 }\) | \(16 = 2 \cdot \sqrt{9} + 10 \) |
\(17 = \sqrt{290 - 1 }\) | \(18 = 19 - 2^{0 }\) | \(19 = 29 - 10 \) | \(20 = 2^{0} + 19 \) |
\(21 = 10 + 2 + 9 \) | \(22 = 9^{0} + 21 \) | \(23 = 10 \cdot 2 + \sqrt{9 }\) | \(24 = ( 9 - \frac{ 10 }{ 2 } )!\) |
\(25 = ( 0! + 2 )! + 19 \) | \(26 = ( 10 + \sqrt{9} ) \cdot 2 \) | \(27 = 29 - 0! - 1 \) | \(28 = 2 \cdot 9 + 10 \) |
\(29 = 10 \cdot 2 + 9 \) | \(30 = 20 + 1 + 9 \) | \(31 = 21 + 0! + 9 \) | \(32 = 10 \cdot \sqrt{9} + 2 \) |
\(33 = ( 12 - 0! ) \cdot \sqrt{9 }\) | \(34 = \frac{ 102 }{ \sqrt{9 } }\) | \(35 = \frac{ 210 }{ \sqrt{9 }! }\) | \(36 = ( 10 + 2 ) \cdot \sqrt{9 }\) |
\(37 = 19 \cdot 2 - 0 !\) | \(38 = ( 10 + 9 ) \cdot 2 \) | \(39 = 10 + 29 \) | \(40 = \frac{ 120 }{ \sqrt{9 } }\) |
\(41 = \sqrt{2^{10}} + 9 \) | \(42 = ( \sqrt{9} - 0! ) \cdot 21 \) | \(43 = ?\) | \(44 = \frac{ 90 }{ 2 } - 1 \) |
\(45 = \frac{ 10 }{ 2 } \cdot 9 \) | \(46 = \frac{ 90 }{ 2 } + 1 \) | \(47 = ( 0! + \sqrt{9} )! \cdot 2 - 1 \) | \(48 = ( 10 - 2 ) \cdot \sqrt{9 }!\) |
\(49 = ( 10 - \sqrt{9} )^{2 }\) | \(50 = ( 2 + \sqrt{9} ) \cdot 10 \) | \(51 = ?\) | \(52 = ?\) |
\(53 = ( 0! + 2 )! \cdot 9 - 1 \) | \(54 = 2^{\sqrt{9}!} - 10 \) | \(55 = ( 0! + 2 )! \cdot 9 + 1 \) | \(56 = \frac{ ( 10 - 2 )! }{ \sqrt{9 }!! }\) |
\(57 = ( 0! + 2 ) \cdot 19 \) | \(58 = ( 0! + 1 ) \cdot 29 \) | \(59 = 20 \cdot \sqrt{9} - 1 \) | \(60 = 10 \cdot 2 \cdot \sqrt{9 }\) |
\(61 = 20 \cdot \sqrt{9} + 1 \) | \(62 = 10 \cdot \sqrt{9}! + 2 \) | \(63 = ( 20 + 1 ) \cdot \sqrt{9 }\) | \(64 = ( 9 - ( 0 + 1 ) )^{2 }\) |
\(65 = ( 9 - 0! )^{2} + 1 \) | \(66 = ( 21 + 0! ) \cdot \sqrt{9 }\) | \(67 = \frac{ 201 }{ \sqrt{9 } }\) | \(68 = ?\) |
\(69 = 90 - 21 \) | \(70 = \frac{ 210 }{ \sqrt{9 } }\) | \(71 = 91 - 20 \) | \(72 = ( 10 - 2 ) \cdot 9 \) |
\(73 = 12 \cdot \sqrt{9}! + 0 !\) | \(74 = 2^{\sqrt{9}!} + 10 \) | \(75 = ?\) | \(76 = ?\) |
\(77 = ?\) | \(78 = 90 - 12 \) | \(79 = 9^{0! + 1} - 2 \) | \(80 = 2^{\sqrt{9}} \cdot 10 \) |
\(81 = 9^{0 \cdot 1 + 2 }\) | \(82 = 92 - 10 \) | \(83 = 9^{0! + 1} + 2 \) | \(84 = 90 - ( 1 + 2 )!\) |
\(85 = 91 - ( 0! + 2 )!\) | \(86 = ?\) | \(87 = 90 - 1 - 2 \) | \(88 = 10 \cdot 9 - 2 \) |
\(89 = 90 + 1 - 2 \) | \(90 = ( 2 - 1 ) \cdot 90 \) | \(91 = 10^{2} - 9 \) | \(92 = 10 \cdot 9 + 2 \) |
\(93 = 102 - 9 \) | \(94 = 91 + 0! + 2 \) | \(95 = \frac{ 190 }{ 2 }\) | \(96 = 102 - \sqrt{9 }!\) |
\(97 = 10^{2} - \sqrt{9 }\) | \(98 = ?\) | \(99 = 102 - \sqrt{9 }\) | \(100 = ( 0 + 1 + 9 )^{2 }\) |