0129

\(1 = 20 - 19 \) \(2 = ( 10 - 9 ) \cdot 2 \) \(3 = 10 + 2 - 9 \) \(4 = 9 - \frac{ 10 }{ 2 }\)
\(5 = 10 - 2 - \sqrt{9 }\) \(6 = ( 10 + 2 - 9 )!\) \(7 = \frac{ 20 + 1 }{ \sqrt{9 } }\) \(8 = 2 \cdot 9 - 10 \)
\(9 = 12 \cdot 0 + 9 \) \(10 = 12^{0} + 9 \) \(11 = 10 \cdot 2 - 9 \) \(12 = 0 \cdot 9 + 12 \)
\(13 = 9^{0} + 12 \) \(14 = \frac{ 10 }{ 2 } + 9 \) \(15 = \frac{ 10 }{ 2 } \cdot \sqrt{9 }\) \(16 = 2 \cdot \sqrt{9} + 10 \)
\(17 = \sqrt{290 - 1 }\) \(18 = 19 - 2^{0 }\) \(19 = 29 - 10 \) \(20 = 2^{0} + 19 \)
\(21 = 10 + 2 + 9 \) \(22 = 9^{0} + 21 \) \(23 = 10 \cdot 2 + \sqrt{9 }\) \(24 = ( 9 - \frac{ 10 }{ 2 } )!\)
\(25 = ( 0! + 2 )! + 19 \) \(26 = ( 10 + \sqrt{9} ) \cdot 2 \) \(27 = 29 - 0! - 1 \) \(28 = 2 \cdot 9 + 10 \)
\(29 = 10 \cdot 2 + 9 \) \(30 = 20 + 1 + 9 \) \(31 = 21 + 0! + 9 \) \(32 = 10 \cdot \sqrt{9} + 2 \)
\(33 = ( 12 - 0! ) \cdot \sqrt{9 }\) \(34 = \frac{ 102 }{ \sqrt{9 } }\) \(35 = \frac{ 210 }{ \sqrt{9 }! }\) \(36 = ( 10 + 2 ) \cdot \sqrt{9 }\)
\(37 = 19 \cdot 2 - 0 !\) \(38 = ( 10 + 9 ) \cdot 2 \) \(39 = 10 + 29 \) \(40 = \frac{ 120 }{ \sqrt{9 } }\)
\(41 = \sqrt{2^{10}} + 9 \) \(42 = ( \sqrt{9} - 0! ) \cdot 21 \) \(43 = ?\) \(44 = \frac{ 90 }{ 2 } - 1 \)
\(45 = \frac{ 10 }{ 2 } \cdot 9 \) \(46 = \frac{ 90 }{ 2 } + 1 \) \(47 = ( 0! + \sqrt{9} )! \cdot 2 - 1 \) \(48 = ( 10 - 2 ) \cdot \sqrt{9 }!\)
\(49 = ( 10 - \sqrt{9} )^{2 }\) \(50 = ( 2 + \sqrt{9} ) \cdot 10 \) \(51 = ?\) \(52 = ?\)
\(53 = ( 0! + 2 )! \cdot 9 - 1 \) \(54 = 2^{\sqrt{9}!} - 10 \) \(55 = ( 0! + 2 )! \cdot 9 + 1 \) \(56 = \frac{ ( 10 - 2 )! }{ \sqrt{9 }!! }\)
\(57 = ( 0! + 2 ) \cdot 19 \) \(58 = ( 0! + 1 ) \cdot 29 \) \(59 = 20 \cdot \sqrt{9} - 1 \) \(60 = 10 \cdot 2 \cdot \sqrt{9 }\)
\(61 = 20 \cdot \sqrt{9} + 1 \) \(62 = 10 \cdot \sqrt{9}! + 2 \) \(63 = ( 20 + 1 ) \cdot \sqrt{9 }\) \(64 = ( 9 - ( 0 + 1 ) )^{2 }\)
\(65 = ( 9 - 0! )^{2} + 1 \) \(66 = ( 21 + 0! ) \cdot \sqrt{9 }\) \(67 = \frac{ 201 }{ \sqrt{9 } }\) \(68 = ?\)
\(69 = 90 - 21 \) \(70 = \frac{ 210 }{ \sqrt{9 } }\) \(71 = 91 - 20 \) \(72 = ( 10 - 2 ) \cdot 9 \)
\(73 = 12 \cdot \sqrt{9}! + 0 !\) \(74 = 2^{\sqrt{9}!} + 10 \) \(75 = ?\) \(76 = ?\)
\(77 = ?\) \(78 = 90 - 12 \) \(79 = 9^{0! + 1} - 2 \) \(80 = 2^{\sqrt{9}} \cdot 10 \)
\(81 = 9^{0 \cdot 1 + 2 }\) \(82 = 92 - 10 \) \(83 = 9^{0! + 1} + 2 \) \(84 = 90 - ( 1 + 2 )!\)
\(85 = 91 - ( 0! + 2 )!\) \(86 = ?\) \(87 = 90 - 1 - 2 \) \(88 = 10 \cdot 9 - 2 \)
\(89 = 90 + 1 - 2 \) \(90 = ( 2 - 1 ) \cdot 90 \) \(91 = 10^{2} - 9 \) \(92 = 10 \cdot 9 + 2 \)
\(93 = 102 - 9 \) \(94 = 91 + 0! + 2 \) \(95 = \frac{ 190 }{ 2 }\) \(96 = 102 - \sqrt{9 }!\)
\(97 = 10^{2} - \sqrt{9 }\) \(98 = ?\) \(99 = 102 - \sqrt{9 }\) \(100 = ( 0 + 1 + 9 )^{2 }\)