0124

\(1 = ( 124 \cdot 0 )!\) \(2 = \frac{ 10 - 2 }{ 4 }\) \(3 = \frac{ 10 + 2 }{ 4 }\) \(4 = 10 - 2 - 4 \)
\(5 = \frac{ 120 }{ 4 ! }\) \(6 = 20 - 14 \) \(7 = \sqrt{\sqrt{2401 }}\) \(8 = 10 + 2 - 4 \)
\(9 = \frac{ 10 }{ 2 } + 4 \) \(10 = \sqrt{102 - \sqrt{4 }}\) \(11 = 12 - 4^{0 }\) \(12 = 10 - 2 + 4 \)
\(13 = 4^{0} + 12 \) \(14 = 24 - 10 \) \(15 = 2^{0} + 14 \) \(16 = 10 + 2 + 4 \)
\(17 = 20 + 1 - 4 \) \(18 = 2 \cdot 4 + 10 \) \(19 = 40 - 21 \) \(20 = \frac{ 10 }{ 2 } \cdot 4 \)
\(21 = 41 - 20 \) \(22 = 4^{0} + 21 \) \(23 = 20 - 1 + 4 \) \(24 = 10 \cdot 2 + 4 \)
\(25 = \frac{ 10^{2} }{ 4 }\) \(26 = 2^{4} + 10 \) \(27 = 14 \cdot 2 - 0 !\) \(28 = 40 - 12 \)
\(29 = \frac{ 10 }{ 2 } + 4 !\) \(30 = \frac{ 120 }{ 4 }\) \(31 = 2^{0! + 4} - 1 \) \(32 = \sqrt{1024 }\)
\(33 = 2^{0! + 4} + 1 \) \(34 = 10 + 24 \) \(35 = 12 - 0! + 4 !\) \(36 = ( 10 - 4 )^{2 }\)
\(37 = 40 - 1 - 2 \) \(38 = 10 \cdot 4 - 2 \) \(39 = 40 + 1 - 2 \) \(40 = ( 2 - 1 ) \cdot 40 \)
\(41 = 40 - 1 + 2 \) \(42 = 10 \cdot 4 + 2 \) \(43 = 40 + 1 + 2 \) \(44 = 10 \cdot 2 + 4 !\)
\(45 = 20 + 1 + 4 !\) \(46 = ( 1 + 2 )! + 40 \) \(47 = 12 \cdot 4 - 0 !\) \(48 = ( 10 + 2 ) \cdot 4 \)
\(49 = \sqrt{2401 }\) \(50 = \frac{ 10^{2} }{ \sqrt{4 } }\) \(51 = \frac{ 102 }{ \sqrt{4 } }\) \(52 = \frac{ 104 }{ 2 }\)
\(53 = ?\) \(54 = \sqrt{\sqrt{2^{4!}}} - 10 \) \(55 = ?\) \(56 = \sqrt{2^{10}} + 4 !\)
\(57 = ?\) \(58 = 2 \cdot 4! + 10 \) \(59 = \frac{ ( 0! + 4 )! }{ 2 } - 1 \) \(60 = \frac{ 120 }{ \sqrt{4 } }\)
\(61 = 20 + 41 \) \(62 = \sqrt{\sqrt{( 0! + 1 )^{4!}}} - 2 \) \(63 = ( 4 - 0! ) \cdot 21 \) \(64 = 2^{10 - 4 }\)
\(65 = 4^{0! + 2} + 1 \) \(66 = \sqrt{\sqrt{( 0! + 1 )^{4!}}} + 2 \) \(67 = ?\) \(68 = ( 10 + 4! ) \cdot 2 \)
\(69 = ( 0! + 2 ) \cdot ( 4! - 1 )\) \(70 = \frac{ 140 }{ 2 }\) \(71 = \sqrt{( \frac{ 14 }{ 2 } )! + 0 !}\) \(72 = \frac{ ( 2 + 4 )! }{ 10 }\)
\(73 = ( 0! + 2 ) \cdot 4! + 1 \) \(74 = \sqrt{\sqrt{2^{4!}}} + 10 \) \(75 = ( 0! + 2 ) \cdot ( 1 + 4 ! )\) \(76 = ( 20 - 1 ) \cdot 4 \)
\(77 = ?\) \(78 = 102 - 4 !\) \(79 = 20 \cdot 4 - 1 \) \(80 = 10 \cdot 2 \cdot 4 \)
\(81 = 20 \cdot 4 + 1 \) \(82 = ( 40 + 1 ) \cdot 2 \) \(83 = 21 \cdot 4 - 0 !\) \(84 = ( 20 + 1 ) \cdot 4 \)
\(85 = 21 \cdot 4 + 0 !\) \(86 = ?\) \(87 = ?\) \(88 = ( 21 + 0! ) \cdot 4 \)
\(89 = ?\) \(90 = ?\) \(91 = ?\) \(92 = ?\)
\(93 = ?\) \(94 = ?\) \(95 = ?\) \(96 = 120 - 4 !\)
\(97 = ?\) \(98 = 102 - 4 \) \(99 = ( 0! + 4 )! - 21 \) \(100 = 102 - \sqrt{4 }\)