0122

\(1 = 21 - 20 \) \(2 = 12 \cdot 0 + 2 \) \(3 = \frac{ 10 }{ 2 } - 2 \) \(4 = \frac{ 10 - 2 }{ 2 }\)
\(5 = \sqrt{( \frac{ 10 }{ 2 } )^{2 }}\) \(6 = 10 - 2 - 2 \) \(7 = \frac{ 10 }{ 2 } + 2 \) \(8 = 20 - 12 \)
\(9 = 10 - \frac{ 2 }{ 2 }\) \(10 = \sqrt{102 - 2 }\) \(11 = \frac{ 2 }{ 2 } + 10 \) \(12 = 22 - 10 \)
\(13 = 2^{0} + 12 \) \(14 = 10 + 2 + 2 \) \(15 = 12 + 0! + 2 \) \(16 = ( 10 - 2 ) \cdot 2 \)
\(17 = 20 - 1 - 2 \) \(18 = 10 \cdot 2 - 2 \) \(19 = 20 + 1 - 2 \) \(20 = ( 2 - 1 ) \cdot 20 \)
\(21 = 20 - 1 + 2 \) \(22 = 10 \cdot 2 + 2 \) \(23 = 20 + 1 + 2 \) \(24 = ( 10 + 2 ) \cdot 2 \)
\(25 = ( \frac{ 10 }{ 2 } )^{2 }\) \(26 = ( 12 + 0! ) \cdot 2 \) \(27 = ( 0! + 2 )! + 21 \) \(28 = ?\)
\(29 = ?\) \(30 = \sqrt{2^{10}} - 2 \) \(31 = \sqrt{\sqrt{2^{20}}} - 1 \) \(32 = 10 + 22 \)
\(33 = \sqrt{\sqrt{2^{20}}} + 1 \) \(34 = \sqrt{2^{10}} + 2 \) \(35 = ( 0! + 2 )!^{2} - 1 \) \(36 = ( 0! + 2 ) \cdot 12 \)
\(37 = ( 0! + 2 )!^{2} + 1 \) \(38 = ( 20 - 1 ) \cdot 2 \) \(39 = 20 \cdot 2 - 1 \) \(40 = 10 \cdot 2 \cdot 2 \)
\(41 = 20 + 21 \) \(42 = ( 20 + 1 ) \cdot 2 \) \(43 = 21 \cdot 2 + 0 !\) \(44 = ( 21 + 0! ) \cdot 2 \)
\(45 = ?\) \(46 = ?\) \(47 = ?\) \(48 = ( 0! + 1 + 2 )! \cdot 2 \)
\(49 = ( ( 0! + 2 )! + 1 )^{2 }\) \(50 = \frac{ 10^{2} }{ 2 }\) \(51 = \frac{ 102 }{ 2 }\) \(52 = ?\)
\(53 = ?\) \(54 = ?\) \(55 = ?\) \(56 = ?\)
\(57 = ?\) \(58 = ?\) \(59 = ?\) \(60 = \frac{ 120 }{ 2 }\)
\(61 = ?\) \(62 = ?\) \(63 = ( 0! + 2 ) \cdot 21 \) \(64 = ( 10 - 2 )^{2 }\)
\(65 = \sqrt{2^{12}} + 0 !\) \(66 = ?\) \(67 = ?\) \(68 = ?\)
\(69 = ?\) \(70 = ?\) \(71 = ?\) \(72 = ( 0! + 2 )! \cdot 12 \)
\(73 = ?\) \(74 = ?\) \(75 = ?\) \(76 = ?\)
\(77 = ?\) \(78 = ?\) \(79 = ?\) \(80 = ?\)
\(81 = ?\) \(82 = ?\) \(83 = ?\) \(84 = ?\)
\(85 = ?\) \(86 = ?\) \(87 = ?\) \(88 = ?\)
\(89 = ?\) \(90 = ?\) \(91 = ?\) \(92 = ?\)
\(93 = ?\) \(94 = ?\) \(95 = ?\) \(96 = ?\)
\(97 = ?\) \(98 = 10^{2} - 2 \) \(99 = ?\) \(100 = 102 - 2 \)