\(1 = ( 118 \cdot 0 )!\) | \(2 = 10 \cdot 1 - 8 \) | \(3 = 10 + 1 - 8 \) | \(4 = 11 + 0! - 8 \) |
\(5 = 8 - \sqrt{10 - 1 }\) | \(6 = ( 10 + 1 - 8 )!\) | \(7 = 8 - 1^{10 }\) | \(8 = 18 - 10 \) |
\(9 = 1^{10} + 8 \) | \(10 = 1^{8} \cdot 10 \) | \(11 = 1^{8} + 10 \) | \(12 = 8^{0} + 11 \) |
\(13 = 10 + \sqrt{\sqrt{81 }}\) | \(14 = \sqrt{10 - 1}! + 8 \) | \(15 = ( 0! + 1 ) \cdot 8 - 1 \) | \(16 = 18 - 0! - 1 \) |
\(17 = 10 - 1 + 8 \) | \(18 = 10 \cdot 1 + 8 \) | \(19 = 10 + \sqrt{81 }\) | \(20 = 11 + 0! + 8 \) |
\(21 = ?\) | \(22 = ?\) | \(23 = ( \frac{ 8 }{ 0! + 1 } )! - 1 \) | \(24 = \sqrt{10 - 1} \cdot 8 \) |
\(25 = ( \frac{ 8 }{ 0! + 1 } )! + 1 \) | \(26 = ?\) | \(27 = ?\) | \(28 = 10 + 18 \) |
\(29 = ?\) | \(30 = 10 \cdot \sqrt{\sqrt{81 }}\) | \(31 = ?\) | \(32 = ?\) |
\(33 = \sqrt{0! + 8} \cdot 11 \) | \(34 = ?\) | \(35 = ?\) | \(36 = ( 0! + 1 ) \cdot 18 \) |
\(37 = ?\) | \(38 = ?\) | \(39 = ?\) | \(40 = \frac{ 80 }{ 1 + 1 }\) |
\(41 = ?\) | \(42 = ?\) | \(43 = ?\) | \(44 = ?\) |
\(45 = ?\) | \(46 = ?\) | \(47 = ?\) | \(48 = \sqrt{10 - 1}! \cdot 8 \) |
\(49 = ( 8 - 1 )^{0! + 1 }\) | \(50 = ?\) | \(51 = ?\) | \(52 = ?\) |
\(53 = ?\) | \(54 = ?\) | \(55 = ?\) | \(56 = \frac{ 8! }{ \sqrt{10 - 1 }!! }\) |
\(57 = ?\) | \(58 = ?\) | \(59 = ?\) | \(60 = 10 \cdot \sqrt{\sqrt{81 }}!\) |
\(61 = ?\) | \(62 = ?\) | \(63 = 8^{0! + 1} - 1 \) | \(64 = 8^{0 + 1 + 1 }\) |
\(65 = 8^{0! + 1} + 1 \) | \(66 = \sqrt{0! + 8}! \cdot 11 \) | \(67 = ?\) | \(68 = ?\) |
\(69 = 80 - 11 \) | \(70 = ( 8 - 1 ) \cdot 10 \) | \(71 = 81 - 10 \) | \(72 = ( 10 - 1 ) \cdot 8 \) |
\(73 = ?\) | \(74 = ?\) | \(75 = ?\) | \(76 = ?\) |
\(77 = ( 8 - 0! ) \cdot 11 \) | \(78 = 80 - 1 - 1 \) | \(79 = 10 \cdot 8 - 1 \) | \(80 = 10 \cdot 1 \cdot 8 \) |
\(81 = 10 \cdot 8 + 1 \) | \(82 = 80 + 1 + 1 \) | \(83 = 81 + 0! + 1 \) | \(84 = ?\) |
\(85 = ?\) | \(86 = ?\) | \(87 = 11 \cdot 8 - 0 !\) | \(88 = ( 10 + 1 ) \cdot 8 \) |
\(89 = 11 \cdot 8 + 0 !\) | \(90 = 10 \cdot \sqrt{81 }\) | \(91 = 10 + 81 \) | \(92 = ?\) |
\(93 = 101 - 8 \) | \(94 = ?\) | \(95 = ?\) | \(96 = ( 11 + 0! ) \cdot 8 \) |
\(97 = ?\) | \(98 = ?\) | \(99 = ( 0! + 8 ) \cdot 11 \) | \(100 = \sqrt{\sqrt{( 10 \cdot 1 )^{8 }}}\) |