\(1 = ( 112 \cdot 0 )!\) | \(2 = 12 - 10 \) | \(3 = \sqrt{20 - 11 }\) | \(4 = \frac{ 10 }{ 2 } - 1 \) |
\(5 = \frac{ 10 \cdot 1 }{ 2 }\) | \(6 = \frac{ 10 }{ 2 } + 1 \) | \(7 = 10 - 1 - 2 \) | \(8 = 10 \cdot 1 - 2 \) |
\(9 = 20 - 11 \) | \(10 = ( 2 - 1 ) \cdot 10 \) | \(11 = 21 - 10 \) | \(12 = 10 \cdot 1 + 2 \) |
\(13 = 10 + 1 + 2 \) | \(14 = 11 + 0! + 2 \) | \(15 = ?\) | \(16 = ( 1 + 2 )! + 10 \) |
\(17 = ( 0! + 2 )! + 11 \) | \(18 = ( 10 - 1 ) \cdot 2 \) | \(19 = 10 \cdot 2 - 1 \) | \(20 = 10 \cdot 1 \cdot 2 \) |
\(21 = 10 \cdot 2 + 1 \) | \(22 = 10 + 12 \) | \(23 = 11 \cdot 2 + 0 !\) | \(24 = ( \frac{ 10 }{ 2 } - 1 )!\) |
\(25 = ( 0! + 1 + 2 )! + 1 \) | \(26 = ?\) | \(27 = ?\) | \(28 = ?\) |
\(29 = ?\) | \(30 = ( 1 + 2 ) \cdot 10 \) | \(31 = 10 + 21 \) | \(32 = \sqrt{2^{10 \cdot 1 }}\) |
\(33 = \sqrt{2^{10}} + 1 \) | \(34 = ?\) | \(35 = ?\) | \(36 = \sqrt{10 - 1}!^{2 }\) |
\(37 = ?\) | \(38 = ?\) | \(39 = ?\) | \(40 = ( 1 + 1 ) \cdot 20 \) |
\(41 = ?\) | \(42 = ( 0! + 1 ) \cdot 21 \) | \(43 = ?\) | \(44 = ?\) |
\(45 = ?\) | \(46 = ?\) | \(47 = ?\) | \(48 = ?\) |
\(49 = ?\) | \(50 = ?\) | \(51 = ?\) | \(52 = ?\) |
\(53 = ?\) | \(54 = ?\) | \(55 = \frac{ 110 }{ 2 }\) | \(56 = ?\) |
\(57 = ?\) | \(58 = ?\) | \(59 = ?\) | \(60 = ( 1 + 2 )! \cdot 10 \) |
\(61 = ?\) | \(62 = ?\) | \(63 = ?\) | \(64 = 2^{\sqrt{10 - 1 }!}\) |
\(65 = ?\) | \(66 = ( 0! + 2 )! \cdot 11 \) | \(67 = ?\) | \(68 = ?\) |
\(69 = ?\) | \(70 = ?\) | \(71 = \sqrt{( ( 0! + 2 )! + 1 )! + 1 }\) | \(72 = \frac{ ( 1 + 2 )!! }{ 10 }\) |
\(73 = ?\) | \(74 = ?\) | \(75 = ?\) | \(76 = ?\) |
\(77 = ?\) | \(78 = ?\) | \(79 = ?\) | \(80 = ?\) |
\(81 = ( 10 - 1 )^{2 }\) | \(82 = ?\) | \(83 = ?\) | \(84 = ?\) |
\(85 = ?\) | \(86 = ?\) | \(87 = ?\) | \(88 = ?\) |
\(89 = ?\) | \(90 = ?\) | \(91 = ?\) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = ?\) | \(96 = ?\) |
\(97 = ?\) | \(98 = ?\) | \(99 = 101 - 2 \) | \(100 = ( 10 \cdot 1 )^{2 }\) |