\(1 = ( 508 \cdot 0 )!\) | \(2 = 58^{0} + 0 !\) | \(3 = \sqrt{50^{0} + 8 }\) | \(4 = 5 - 80^{0 }\) |
\(5 = 80 \cdot 0 + 5 \) | \(6 = 80^{0} + 5 \) | \(7 = 8 - 50^{0 }\) | \(8 = 50 \cdot 0 + 8 \) |
\(9 = 50^{0} + 8 \) | \(10 = \sqrt{5 - 0^{0}} + 8 \) | \(11 = \sqrt{80^{0} + 5 !}\) | \(12 = 5 - 0^{0} + 8 \) |
\(13 = 0 + 0 + 5 + 8 \) | \(14 = 0^{0} + 5 + 8 \) | \(15 = \frac{ 80 }{ 5 } - 0 !\) | \(16 = \frac{ 80 + 0 }{ 5 }\) |
\(17 = \frac{ 80 }{ 5 } + 0 !\) | \(18 = ( 0! + 0! ) \cdot 5 + 8 \) | \(19 = \sqrt{50 \cdot 8} - 0 !\) | \(20 = \sqrt{( 50 + 0 ) \cdot 8 }\) |
\(21 = \sqrt{50 \cdot 8} + 0 !\) | \(22 = ?\) | \(23 = \sqrt{\frac{ 80 }{ 5 }}! - 0 !\) | \(24 = ( 5 - 80^{0 } )!\) |
\(25 = 5^{8^{0} + 0 !}\) | \(26 = 0^{0} + \sqrt{\sqrt{5^{8 }}}\) | \(27 = \sqrt{( 0! + 5 )! + 0! + 8 }\) | \(28 = ( 5 - 0! ) \cdot ( 8 - 0 ! )\) |
\(29 = \frac{ 58 }{ 0! + 0 ! }\) | \(30 = 80 - 50 \) | \(31 = ( 5 - 0! ) \cdot 8 - 0 !\) | \(32 = ( 5 - 0^{0} ) \cdot 8 \) |
\(33 = 5^{0! + 0!} + 8 \) | \(34 = ( 8 - 0! ) \cdot 5 - 0 !\) | \(35 = ( 8 - 0^{0} ) \cdot 5 \) | \(36 = \sqrt{\sqrt{( 0^{0} + 5 )^{8 }}}\) |
\(37 = \sqrt{\sqrt{( 0! + 5 )^{8}}} + 0 !\) | \(38 = 5 \cdot 8 - 0! - 0 !\) | \(39 = 5 \cdot 8 - 0^{0 }\) | \(40 = 5! - ( 80 + 0 )\) |
\(41 = 50 - 0! - 8 \) | \(42 = 50 + 0 - 8 \) | \(43 = 50 + 0! - 8 \) | \(44 = 50 - \sqrt{0! + 8 }!\) |
\(45 = ( 0^{0} + 8 ) \cdot 5 \) | \(46 = ( 0! + 8 ) \cdot 5 + 0 !\) | \(47 = 50 - \sqrt{0! + 8 }\) | \(48 = ( 0^{0} + 5 ) \cdot 8 \) |
\(49 = 50 - 8^{0 }\) | \(50 = 0 \cdot 8 + 50 \) | \(51 = 8^{0} + 50 \) | \(52 = \frac{ 5! }{ 0! + 0! } - 8 \) |
\(53 = \sqrt{0! + 8} + 50 \) | \(54 = ( 0! + 5 ) \cdot ( 0! + 8 )\) | \(55 = \frac{ 8! }{ ( 0! + 5 )! } - 0 !\) | \(56 = \sqrt{50 - 0!} \cdot 8 \) |
\(57 = 58 - 0^{0 }\) | \(58 = 50 + 0 + 8 \) | \(59 = 0^{0} + 58 \) | \(60 = 58 + 0! + 0 !\) |
\(61 = \sqrt{\sqrt{0! + 8}!! \cdot 5} + 0 !\) | \(62 = ?\) | \(63 = 8^{\sqrt{5 - 0!}} - 0 !\) | \(64 = 8^{\sqrt{5 - 0^{0 }}}\) |
\(65 = 8^{\sqrt{5 - 0!}} + 0 !\) | \(66 = \sqrt{( 8 - 0! )! + 0!} - 5 \) | \(67 = ?\) | \(68 = \frac{ 5! }{ 0! + 0! } + 8 \) |
\(69 = 80 - \sqrt{0! + 5 !}\) | \(70 = ?\) | \(71 = \sqrt{( 8 - 5^{0} )! + 0 !}\) | \(72 = ( 5 - 0! )! \cdot \sqrt{0! + 8 }\) |
\(73 = ?\) | \(74 = 80 - 0! - 5 \) | \(75 = 80 + 0 - 5 \) | \(76 = 80 + 0! - 5 \) |
\(77 = \sqrt{0! + 5!} \cdot ( 8 - 0 ! )\) | \(78 = 80 - \sqrt{5 - 0 !}\) | \(79 = 80 - 5^{0 }\) | \(80 = 0 \cdot 5 + 80 \) |
\(81 = 5^{0} + 80 \) | \(82 = \sqrt{5 - 0!} + 80 \) | \(83 = 85 - 0! - 0 !\) | \(84 = 85 - 0^{0 }\) |
\(85 = 80 + 0 + 5 \) | \(86 = 0^{0} + 85 \) | \(87 = 85 + 0! + 0 !\) | \(88 = \sqrt{0^{0} + 5!} \cdot 8 \) |
\(89 = \frac{ ( 0! + 5 )! }{ 8 } - 0 !\) | \(90 = \frac{ ( 0^{0} + 5 )! }{ 8 }\) | \(91 = \sqrt{0! + 5!} + 80 \) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = ?\) | \(96 = ( \sqrt{0! + 5!} + 0! ) \cdot 8 \) |
\(97 = ?\) | \(98 = ?\) | \(99 = \sqrt{0! + 5!} \cdot ( 0! + 8 )\) | \(100 = \sqrt{\sqrt{( ( 0! + 0! ) \cdot 5 )^{8 }}}\) |