\(1 = ( 507 \cdot 0 )!\) | \(2 = 57^{0} + 0 !\) | \(3 = 7 - ( 5 - 0^{0 } )\) | \(4 = 5 - 70^{0 }\) |
\(5 = 70 \cdot 0 + 5 \) | \(6 = 7 - 50^{0 }\) | \(7 = 50 \cdot 0 + 7 \) | \(8 = 50^{0} + 7 \) |
\(9 = \sqrt{5 - 0^{0}} + 7 \) | \(10 = ( 7^{0} + 0! ) \cdot 5 \) | \(11 = 5 - 0^{0} + 7 \) | \(12 = 0 + 0 + 5 + 7 \) |
\(13 = \frac{ 70 }{ 5 } - 0 !\) | \(14 = \frac{ 70 + 0 }{ 5 }\) | \(15 = \frac{ 70 }{ 5 } + 0 !\) | \(16 = ( 5 - 0! )! - 0! - 7 \) |
\(17 = ( 5 - 0^{0} )! - 7 \) | \(18 = \sqrt{0^{0} + 5!} + 7 \) | \(19 = ( 0! + 0! ) \cdot 7 + 5 \) | \(20 = 70 - 50 \) |
\(21 = \sqrt{0! + 7!} - 50 \) | \(22 = ?\) | \(23 = ( 5 - 7^{0} )! - 0 !\) | \(24 = ( 5 - 70^{0 } )!\) |
\(25 = 5^{7^{0} + 0 !}\) | \(26 = \sqrt{\sqrt{5^{0! + 7}}} + 0 !\) | \(27 = ( 5 - 0! ) \cdot 7 - 0 !\) | \(28 = ( 5 - 0^{0} ) \cdot 7 \) |
\(29 = ( 5 - 0! ) \cdot 7 + 0 !\) | \(30 = ( 7 - 0^{0} ) \cdot 5 \) | \(31 = ( 5 - 0^{0} )! + 7 \) | \(32 = ( 7^{0} + 0! )^{5 }\) |
\(33 = 5 \cdot 7 - 0! - 0 !\) | \(34 = 5 \cdot 7 - 0^{0 }\) | \(35 = ( 0 + 0 + 5 ) \cdot 7 \) | \(36 = 0^{0} + 5 \cdot 7 \) |
\(37 = 5 \cdot 7 + 0! + 0 !\) | \(38 = ?\) | \(39 = ( 0! + 0! )^{5} + 7 \) | \(40 = ( 0^{0} + 7 ) \cdot 5 \) |
\(41 = ( 0! + 7 ) \cdot 5 + 0 !\) | \(42 = 50 - 0! - 7 \) | \(43 = 50 + 0 - 7 \) | \(44 = 50 + 0! - 7 \) |
\(45 = ( 0! + 0! + 7 ) \cdot 5 \) | \(46 = 70 - ( 5 - 0 ! )!\) | \(47 = \sqrt{0! + 7!} - ( 5 - 0 ! )!\) | \(48 = ( 0! + 5 ) \cdot ( 0! + 7 )\) |
\(49 = 50 - 7^{0 }\) | \(50 = 0 \cdot 7 + 50 \) | \(51 = 7^{0} + 50 \) | \(52 = ?\) |
\(53 = \frac{ 5! }{ 0! + 0! } - 7 \) | \(54 = 7^{0! + 0!} + 5 \) | \(55 = 57 - 0! - 0 !\) | \(56 = 57 - 0^{0 }\) |
\(57 = 50 + 0 + 7 \) | \(58 = 0^{0} + 57 \) | \(59 = 57 + 0! + 0 !\) | \(60 = \frac{ 5! }{ 7^{0} + 0 ! }\) |
\(61 = \sqrt{( 7 - 0! )! \cdot 5} + 0 !\) | \(62 = ?\) | \(63 = ?\) | \(64 = 70 - 0! - 5 \) |
\(65 = 70 + 0 - 5 \) | \(66 = 70 + 0! - 5 \) | \(67 = \frac{ 5! }{ 0! + 0! } + 7 \) | \(68 = 70 - \sqrt{5 - 0 !}\) |
\(69 = 70 - 5^{0 }\) | \(70 = 0 \cdot 5 + 70 \) | \(71 = 5^{0} + 70 \) | \(72 = \sqrt{5 - 0!} + 70 \) |
\(73 = 75 - 0! - 0 !\) | \(74 = 75 - 0^{0 }\) | \(75 = 70 + 0 + 5 \) | \(76 = 0^{0} + 75 \) |
\(77 = 75 + 0! + 0 !\) | \(78 = \sqrt{0! + 5!} \cdot 7 + 0 !\) | \(79 = ?\) | \(80 = ?\) |
\(81 = \sqrt{0! + 5!} + 70 \) | \(82 = \sqrt{0! + 5!} + \sqrt{0! + 7 !}\) | \(83 = ?\) | \(84 = ( \sqrt{0! + 5!} + 0! ) \cdot 7 \) |
\(85 = ?\) | \(86 = ?\) | \(87 = ?\) | \(88 = \sqrt{0! + 5!} \cdot ( 0! + 7 )\) |
\(89 = ?\) | \(90 = \frac{ ( 0! + 5 )! }{ 0! + 7 }\) | \(91 = ?\) | \(92 = ?\) |
\(93 = ?\) | \(94 = ( 5 - 0! )! + 70 \) | \(95 = ( 5 - 0! )! + \sqrt{0! + 7 !}\) | \(96 = ?\) |
\(97 = ?\) | \(98 = ?\) | \(99 = ?\) | \(100 = ?\) |