\(1 = ( 406 \cdot 0 )!\) | \(2 = 46^{0} + 0 !\) | \(3 = 4 - 60^{0 }\) | \(4 = 60 \cdot 0 + 4 \) |
\(5 = 6 - 40^{0 }\) | \(6 = 40 \cdot 0 + 6 \) | \(7 = 40^{0} + 6 \) | \(8 = \frac{ 40 }{ 6 - 0 ! }\) |
\(9 = 0^{0} + \sqrt{64 }\) | \(10 = \sqrt{40 + 60 }\) | \(11 = 0^{0} + 4 + 6 \) | \(12 = \frac{ 60 }{ 0! + 4 }\) |
\(13 = 0^{0} + \sqrt{4} \cdot 6 \) | \(14 = \sqrt{400} - 6 \) | \(15 = \frac{ 60 + 0 }{ 4 }\) | \(16 = \frac{ 60 }{ 4 } + 0 !\) |
\(17 = \frac{ 6! }{ 40 } - 0 !\) | \(18 = \frac{ 6! }{ 40 + 0 }\) | \(19 = \frac{ 6! }{ 40 } + 0 !\) | \(20 = 60 - 40 \) |
\(21 = ( 6 - 0! ) \cdot 4 + 0 !\) | \(22 = ( 0! + 0! )^{4} + 6 \) | \(23 = 4! - 60^{0 }\) | \(24 = \sqrt{600 - 4 !}\) |
\(25 = \frac{ 600 }{ 4 ! }\) | \(26 = \sqrt{400} + 6 \) | \(27 = \sqrt{( 4 - 0^{0} )^{6 }}\) | \(28 = ( 0^{0} + 6 ) \cdot 4 \) |
\(29 = \frac{ 60 }{ \sqrt{4} } - 0 !\) | \(30 = \frac{ 60 + 0 }{ \sqrt{4 } }\) | \(31 = \frac{ 60 }{ \sqrt{4} } + 0 !\) | \(32 = \frac{ 64 }{ 0! + 0 ! }\) |
\(33 = 40 - 0! - 6 \) | \(34 = 40 + 0 - 6 \) | \(35 = 40 + 0! - 6 \) | \(36 = \frac{ 6! }{ \sqrt{400 } }\) |
\(37 = 60 + 0! - 4 !\) | \(38 = 6^{0! + 0!} + \sqrt{4 }\) | \(39 = 40 - 6^{0 }\) | \(40 = 0 \cdot 6 + 40 \) |
\(41 = 6^{0} + 40 \) | \(42 = ( ( 4 - 0! )! + 0! ) \cdot 6 \) | \(43 = ?\) | \(44 = 46 - 0! - 0 !\) |
\(45 = 46 - 0^{0 }\) | \(46 = 40 + 0 + 6 \) | \(47 = 0^{0} + 46 \) | \(48 = 46 + 0! + 0 !\) |
\(49 = ( 0^{0} + 6 )^{\sqrt{4 }}\) | \(50 = ( 0! + 6 )^{\sqrt{4}} + 0 !\) | \(51 = ?\) | \(52 = ?\) |
\(53 = ?\) | \(54 = 60 - ( 4 - 0 ! )!\) | \(55 = 60 - 0! - 4 \) | \(56 = 60 + 0 - 4 \) |
\(57 = 60 + 0! - 4 \) | \(58 = 60 + 0 - \sqrt{4 }\) | \(59 = 60 - 4^{0 }\) | \(60 = 0 \cdot 4 + 60 \) |
\(61 = 4^{0} + 60 \) | \(62 = 60 + 0 + \sqrt{4 }\) | \(63 = 64 - 0^{0 }\) | \(64 = 60 + 0 + 4 \) |
\(65 = 0^{0} + 64 \) | \(66 = ( 4 - 0! )! + 60 \) | \(67 = \sqrt{( 0! + 6 )! + 0!} - 4 \) | \(68 = ( 0! + 0! )^{6} + 4 \) |
\(69 = \sqrt{( 0! + 6 )! + 0!} - \sqrt{4 }\) | \(70 = \sqrt{\sqrt{( 0! + 0! )^{4!}}} + 6 \) | \(71 = \sqrt{( 4^{0} + 6 )! + 0 !}\) | \(72 = \frac{ 4! }{ 0! + 0! } \cdot 6 \) |
\(73 = \sqrt{( 0! + 6 )! + 0!} + \sqrt{4 }\) | \(74 = ?\) | \(75 = \sqrt{( 0! + 6 )! + 0!} + 4 \) | \(76 = ?\) |
\(77 = ?\) | \(78 = ?\) | \(79 = ?\) | \(80 = \sqrt{6400 }\) |
\(81 = ( \frac{ 6 }{ 0! + 0! } )^{4 }\) | \(82 = ?\) | \(83 = 60 - 0! + 4 !\) | \(84 = 60 + 0 + 4 !\) |
\(85 = 60 + 0! + 4 !\) | \(86 = ?\) | \(87 = ?\) | \(88 = ( 0! + 0! )^{6} + 4 !\) |
\(89 = ?\) | \(90 = \frac{ 6! }{ ( 0! + 0! ) \cdot 4 }\) | \(91 = ?\) | \(92 = ( 0! + 0! ) \cdot 46 \) |
\(93 = ?\) | \(94 = ?\) | \(95 = ( 6 - 0! )! - 0! - 4 !\) | \(96 = ( 0! + 0! )^{4} \cdot 6 \) |
\(97 = ( 6 - 0! )! + 0! - 4 !\) | \(98 = ?\) | \(99 = ?\) | \(100 = 40 + 60 \) |