\(1 = ( 405 \cdot 0 )!\) | \(2 = \sqrt{\frac{ \sqrt{400} }{ 5 }}\) | \(3 = 4 - 50^{0 }\) | \(4 = \frac{ \sqrt{400} }{ 5 }\) |
\(5 = 40 \cdot 0 + 5 \) | \(6 = 40^{0} + 5 \) | \(7 = \frac{ 40 }{ 5 } - 0 !\) | \(8 = \frac{ 40 + 0 }{ 5 }\) |
\(9 = \frac{ 40 }{ 5 } + 0 !\) | \(10 = 50 - 40 \) | \(11 = \sqrt{40^{0} + 5 !}\) | \(12 = ( 0^{0} + 5 ) \cdot \sqrt{4 }\) |
\(13 = ( 0! + 0! ) \cdot 4 + 5 \) | \(14 = \sqrt{( 50 - 0! ) \cdot 4 }\) | \(15 = \sqrt{400} - 5 \) | \(16 = ( 5 - 0^{0} ) \cdot 4 \) |
\(17 = 4! - \sqrt{50 - 0 !}\) | \(18 = \frac{ ( 0! + 5 )! }{ 40 }\) | \(19 = 4 \cdot 5 - 0^{0 }\) | \(20 = ( 0 + 0 + 4 ) \cdot 5 \) |
\(21 = 0^{0} + 4 \cdot 5 \) | \(22 = 4! - \sqrt{5 - 0^{0 }}\) | \(23 = 4! - 50^{0 }\) | \(24 = ( \frac{ \sqrt{400} }{ 5 } )!\) |
\(25 = \sqrt{400} + 5 \) | \(26 = 50 + 0 - 4 !\) | \(27 = 50 + 0! - 4 !\) | \(28 = \sqrt{50 - 0!} \cdot 4 \) |
\(29 = ( 0 + 0 + 4 )! + 5 \) | \(30 = ( 4 - 0^{0} )! \cdot 5 \) | \(31 = 0^{0} + \frac{ 5! }{ 4 }\) | \(32 = ( 0 + 0 + \sqrt{4} )^{5 }\) |
\(33 = 0^{0} + \sqrt{4}^{5 }\) | \(34 = 40 - 0! - 5 \) | \(35 = 40 + 0 - 5 \) | \(36 = 40 + 0! - 5 \) |
\(37 = ( 0! + 5 )^{\sqrt{4}} + 0 !\) | \(38 = 40 - \sqrt{5 - 0 !}\) | \(39 = 40 - 5^{0 }\) | \(40 = 0 \cdot 5 + 40 \) |
\(41 = 5^{0} + 40 \) | \(42 = \sqrt{5 - 0!} + 40 \) | \(43 = 45 - 0! - 0 !\) | \(44 = 45 - 0^{0 }\) |
\(45 = 40 + 0 + 5 \) | \(46 = 0^{0} + 45 \) | \(47 = 50 + 0! - 4 \) | \(48 = 50 + 0 - \sqrt{4 }\) |
\(49 = 50 - 4^{0 }\) | \(50 = 0 \cdot 4 + 50 \) | \(51 = 4^{0} + 50 \) | \(52 = 50 + 0 + \sqrt{4 }\) |
\(53 = 54 - 0^{0 }\) | \(54 = 50 + 0 + 4 \) | \(55 = 0^{0} + 54 \) | \(56 = ( 4 - 0! )! + 50 \) |
\(57 = ?\) | \(58 = ( 0! + 0! ) \cdot ( 4! + 5 )\) | \(59 = \frac{ 5! }{ \sqrt{4} } - 0^{0 }\) | \(60 = \frac{ 5! }{ 0 + 0 + \sqrt{4 } }\) |
\(61 = 0^{0} + \frac{ 5! }{ \sqrt{4 } }\) | \(62 = \frac{ 4 + 5! }{ 0! + 0 ! }\) | \(63 = \sqrt{4}^{0! + 5} - 0 !\) | \(64 = ( 5 - 0! )! + 40 \) |
\(65 = \sqrt{4}^{0! + 5} + 0 !\) | \(66 = ( 4 - 0! )! \cdot \sqrt{0! + 5 !}\) | \(67 = ?\) | \(68 = ?\) |
\(69 = \sqrt{\sqrt{( 0! + 0! )^{4!}}} + 5 \) | \(70 = ( 0! + 4 )! - 50 \) | \(71 = \sqrt{0^{0} + ( \sqrt{4} + 5 )!}\) | \(72 = ( 5 - ( 0! + 0! ) ) \cdot 4 !\) |
\(73 = 50 - 0! + 4 !\) | \(74 = 50 + 0 + 4 !\) | \(75 = 50 + 0! + 4 !\) | \(76 = ?\) |
\(77 = ?\) | \(78 = ?\) | \(79 = 5! - ( 40 + 0 ! )\) | \(80 = \frac{ 400 }{ 5 }\) |
\(81 = 5! - ( 40 - 0 ! )\) | \(82 = ?\) | \(83 = ?\) | \(84 = \frac{ 5! }{ 0! + 0! } + 4 !\) |
\(85 = ?\) | \(86 = ?\) | \(87 = ?\) | \(88 = ?\) |
\(89 = ?\) | \(90 = 40 + 50 \) | \(91 = ?\) | \(92 = ( ( 5 - 0! )! - 0! ) \cdot 4 \) |
\(93 = ?\) | \(94 = 5! - ( 0! + 0! + 4 ! )\) | \(95 = 5! - ( 0^{0} + 4 ! )\) | \(96 = ( 5 - 0^{0} ) \cdot 4 !\) |
\(97 = 5! - ( 4! - 0^{0 } )\) | \(98 = ( 50 - 0! ) \cdot \sqrt{4 }\) | \(99 = 50 \cdot \sqrt{4} - 0 !\) | \(100 = \sqrt{400} \cdot 5 \) |