0033

\(1 = \frac{ 30 }{ 30 }\) \(2 = 3 - 30^{0 }\) \(3 = 30 \cdot 0 + 3 \) \(4 = 30^{0} + 3 \)
\(5 = 3! - 30^{0 }\) \(6 = ( 30 \cdot 0 + 3 )!\) \(7 = 30^{0} + 3 !\) \(8 = ( 3 - 0^{0} )^{3 }\)
\(9 = \frac{ 30 }{ 3 } - 0 !\) \(10 = \sqrt{\frac{ 300 }{ 3 }}\) \(11 = \frac{ 30 }{ 3 } + 0 !\) \(12 = ( 0^{0} + 3 ) \cdot 3 \)
\(13 = 0^{0} + 3! + 3 !\) \(14 = ( 0! + 0! )^{3} + 3 !\) \(15 = \frac{ 30 }{ 3 - 0 ! }\) \(16 = ( 3 - 0! )^{0! + 3 }\)
\(17 = 3 \cdot 3! - 0^{0 }\) \(18 = ( 0 + 0 + 3 ) \cdot 3 !\) \(19 = 0^{0} + 3 \cdot 3 !\) \(20 = \frac{ ( 3! - 0^{0} )! }{ 3 ! }\)
\(21 = ( 0^{0} + 3 )! - 3 \) \(22 = ( 0! + 3 )! + 0! - 3 \) \(23 = 30 - 0! - 3 !\) \(24 = ( 30^{0} + 3 )!\)
\(25 = 30 + 0! - 3 !\) \(26 = 30 - 0! - 3 \) \(27 = 30 + 0 - 3 \) \(28 = 30 + 0! - 3 \)
\(29 = 30 - 3^{0 }\) \(30 = \sqrt{300 \cdot 3 }\) \(31 = 3^{0} + 30 \) \(32 = 33 - 0^{0 }\)
\(33 = 30 + 0 + 3 \) \(34 = 0^{0} + 33 \) \(35 = 30 - 0! + 3 !\) \(36 = 30 + 0 + 3 !\)
\(37 = 30 + 0! + 3 !\) \(38 = 3! \cdot 3! + 0! + 0 !\) \(39 = 3!^{0! + 0!} + 3 \) \(40 = \frac{ ( 3! - 0^{0} )! }{ 3 }\)
\(41 = \frac{ ( 3! - 0! )! }{ 3 } + 0 !\) \(42 = ( 0^{0} + 3! ) \cdot 3 !\) \(43 = ( 0! + 3! ) \cdot 3! + 0 !\) \(44 = ?\)
\(45 = ?\) \(46 = ?\) \(47 = ?\) \(48 = ( 0! + 0! )^{3} \cdot 3 !\)
\(49 = ( 0! + 3! )^{3 - 0 !}\) \(50 = \frac{ 300 }{ 3 ! }\) \(51 = ?\) \(52 = ?\)
\(53 = ?\) \(54 = ( 0! + 3 )! + 30 \) \(55 = ?\) \(56 = \frac{ ( ( 0! + 0! )^{3} )! }{ 3 !! }\)
\(57 = ?\) \(58 = ( 0! + 0! )^{3!} - 3 !\) \(59 = \sqrt{( 3! - 0! ) \cdot 3!!} - 0 !\) \(60 = 30 + 30 \)
\(61 = ( 0! + 0! )^{3!} - 3 \) \(62 = ?\) \(63 = ( 0! + 3 )^{3} - 0 !\) \(64 = ( 0^{0} + 3 )^{3 }\)
\(65 = ( 0! + 3 )^{3} + 0 !\) \(66 = ( 0! + 0! ) \cdot 33 \) \(67 = ( 0! + 0! )^{3!} + 3 \) \(68 = \sqrt{( 0! + 3! )! + 0!} - 3 \)
\(69 = ( ( 0! + 3 )! - 0! ) \cdot 3 \) \(70 = ( 0! + 0! )^{3!} + 3 !\) \(71 = ( 0! + 3 )! \cdot 3 - 0 !\) \(72 = ( 0^{0} + 3 )! \cdot 3 \)
\(73 = ( 0! + 3 )! \cdot 3 + 0 !\) \(74 = \sqrt{( 0! + 3! )! + 0!} + 3 \) \(75 = ( ( 0! + 3 )! + 0! ) \cdot 3 \) \(76 = ?\)
\(77 = \sqrt{( 0! + 3! )! + 0!} + 3 !\) \(78 = ?\) \(79 = ?\) \(80 = 3^{0! + 3} - 0 !\)
\(81 = 3^{0^{0} + 3 }\) \(82 = 3^{0! + 3} + 0 !\) \(83 = ?\) \(84 = ?\)
\(85 = ?\) \(86 = ?\) \(87 = ( 30 - 0! ) \cdot 3 \) \(88 = ?\)
\(89 = 30 \cdot 3 - 0 !\) \(90 = ( 30 + 0 ) \cdot 3 \) \(91 = 30 \cdot 3 + 0 !\) \(92 = ?\)
\(93 = ( 30 + 0! ) \cdot 3 \) \(94 = ?\) \(95 = ?\) \(96 = ( 0! + 3 ) \cdot ( 0! + 3 )!\)
\(97 = ?\) \(98 = ?\) \(99 = ?\) \(100 = \frac{ 300 }{ 3 }\)