\(1 = \sqrt{100} - 9 \) | \(2 = 90^{0} + 1 \) | \(3 = \sqrt{\frac{ 90 }{ 10 }}\) | \(4 = 10^{0} + \sqrt{9 }\) |
\(5 = \sqrt{9}! - 10^{0 }\) | \(6 = \sqrt{\frac{ 90 }{ 10 }}!\) | \(7 = \sqrt{100} - \sqrt{9 }\) | \(8 = 9 - 10^{0 }\) |
\(9 = \frac{ 90 }{ 10 }\) | \(10 = \sqrt{10 + 90 }\) | \(11 = 9^{0} + 10 \) | \(12 = \sqrt{10 - 0!} + 9 \) |
\(13 = \sqrt{100} + \sqrt{9 }\) | \(14 = 10 + 0! + \sqrt{9 }\) | \(15 = \sqrt{10 - 0!}! + 9 \) | \(16 = \sqrt{100} + \sqrt{9 }!\) |
\(17 = 19 - 0! - 0 !\) | \(18 = 19 - 0^{0 }\) | \(19 = \sqrt{100} + 9 \) | \(20 = 0^{0} + 19 \) |
\(21 = 19 + 0! + 0 !\) | \(22 = ( 0! + \sqrt{9} )! - 0! - 1 \) | \(23 = ( 0^{0} + \sqrt{9} )! - 1 \) | \(24 = ( 10^{0} + \sqrt{9 } )!\) |
\(25 = ( 0^{0} + \sqrt{9} )! + 1 \) | \(26 = ( 0! + \sqrt{9} )! + 0! + 1 \) | \(27 = \sqrt{10 - 0!} \cdot 9 \) | \(28 = ?\) |
\(29 = \sqrt{900} - 1 \) | \(30 = \sqrt{100 \cdot 9 }\) | \(31 = \sqrt{900} + 1 \) | \(32 = \sqrt{( \sqrt{9} - 0! )^{10 }}\) |
\(33 = ( 10 + 0! ) \cdot \sqrt{9 }\) | \(34 = ( 0! + \sqrt{9} )! + 10 \) | \(35 = \sqrt{9}!^{0! + 0!} - 1 \) | \(36 = \sqrt{9}!^{0^{0} + 1 }\) |
\(37 = \sqrt{9}!^{0! + 0!} + 1 \) | \(38 = ( 0! + 0! ) \cdot 19 \) | \(39 = ?\) | \(40 = ( 0! + \sqrt{9} ) \cdot 10 \) |
\(41 = ?\) | \(42 = ?\) | \(43 = ?\) | \(44 = ?\) |
\(45 = \frac{ 90 }{ 0! + 1 }\) | \(46 = ?\) | \(47 = ?\) | \(48 = ( 0! + 0! ) \cdot ( 1 + \sqrt{9 } )!\) |
\(49 = ( 1 + \sqrt{9}! )^{0! + 0 !}\) | \(50 = ( \sqrt{9}! - 0! ) \cdot 10 \) | \(51 = ?\) | \(52 = ?\) |
\(53 = ?\) | \(54 = \sqrt{10 - 0!}! \cdot 9 \) | \(55 = ?\) | \(56 = ?\) |
\(57 = ?\) | \(58 = ?\) | \(59 = 10 \cdot \sqrt{9}! - 0 !\) | \(60 = \sqrt{100} \cdot \sqrt{9 }!\) |
\(61 = 10 \cdot \sqrt{9}! + 0 !\) | \(62 = ?\) | \(63 = ( 0! + 0! )^{\sqrt{9}!} - 1 \) | \(64 = ( 0^{0} + 1 )^{\sqrt{9 }!}\) |
\(65 = ( 0! + 0! )^{\sqrt{9}!} + 1 \) | \(66 = ( 10 + 0! ) \cdot \sqrt{9 }!\) | \(67 = ?\) | \(68 = ?\) |
\(69 = ?\) | \(70 = ( 0! + \sqrt{9}! ) \cdot 10 \) | \(71 = \sqrt{( 10 - \sqrt{9} )! + 0 !}\) | \(72 = \frac{ \sqrt{9}!! }{ \sqrt{100 } }\) |
\(73 = \frac{ \sqrt{9}!! }{ 10 } + 0 !\) | \(74 = ?\) | \(75 = ?\) | \(76 = ?\) |
\(77 = ?\) | \(78 = ?\) | \(79 = ?\) | \(80 = 90 - 10 \) |
\(81 = ( 10 - 0! ) \cdot 9 \) | \(82 = 9^{0! + 0!} + 1 \) | \(83 = ?\) | \(84 = ?\) |
\(85 = ?\) | \(86 = ?\) | \(87 = ?\) | \(88 = 90 - 0! - 1 \) |
\(89 = 90 + 0 - 1 \) | \(90 = \sqrt{100} \cdot 9 \) | \(91 = 100 - 9 \) | \(92 = 0^{0} + 91 \) |
\(93 = 91 + 0! + 0 !\) | \(94 = 100 - \sqrt{9 }!\) | \(95 = ?\) | \(96 = ?\) |
\(97 = 100 - \sqrt{9 }\) | \(98 = ?\) | \(99 = ( 10 + 0! ) \cdot 9 \) | \(100 = 10 + 90 \) |