\(1 = ( 108 \cdot 0 )!\) | \(2 = \sqrt{100} - 8 \) | \(3 = \sqrt{10^{0} + 8 }\) | \(4 = \frac{ 8 }{ 0^{0} + 1 }\) |
\(5 = 8 - \sqrt{10 - 0 !}\) | \(6 = 8 - ( 0^{0} + 1 )\) | \(7 = 8 - 10^{0 }\) | \(8 = \frac{ 80 }{ 10 }\) |
\(9 = 10^{0} + 8 \) | \(10 = 0 \cdot 8 + 10 \) | \(11 = 8^{0} + 10 \) | \(12 = ( 0! + 0! ) \cdot \sqrt{\sqrt{81 }}!\) |
\(13 = \sqrt{0! + 8} + 10 \) | \(14 = \sqrt{10 - 0!}! + 8 \) | \(15 = ( 0! + 0! ) \cdot 8 - 1 \) | \(16 = ( 0^{0} + 1 ) \cdot 8 \) |
\(17 = 18 - 0^{0 }\) | \(18 = \sqrt{100} + 8 \) | \(19 = 0^{0} + 18 \) | \(20 = 18 + 0! + 0 !\) |
\(21 = ?\) | \(22 = ?\) | \(23 = ( \frac{ 8 }{ 0! + 0! } )! - 1 \) | \(24 = \sqrt{10 - 0!} \cdot 8 \) |
\(25 = ( \frac{ 8 }{ 0! + 0! } )! + 1 \) | \(26 = ?\) | \(27 = ?\) | \(28 = ?\) |
\(29 = ?\) | \(30 = \sqrt{0! + 8} \cdot 10 \) | \(31 = ?\) | \(32 = ?\) |
\(33 = ?\) | \(34 = ?\) | \(35 = ?\) | \(36 = ( 0! + 0! ) \cdot 18 \) |
\(37 = ?\) | \(38 = ?\) | \(39 = ?\) | \(40 = \frac{ 80 }{ 0! + 1 }\) |
\(41 = ?\) | \(42 = ?\) | \(43 = ?\) | \(44 = ?\) |
\(45 = ?\) | \(46 = ?\) | \(47 = ?\) | \(48 = \sqrt{10 - 0!}! \cdot 8 \) |
\(49 = ( 8 - 1 )^{0! + 0 !}\) | \(50 = ?\) | \(51 = ?\) | \(52 = ?\) |
\(53 = ?\) | \(54 = ?\) | \(55 = ?\) | \(56 = \frac{ 8! }{ \sqrt{10 - 0 !}!! }\) |
\(57 = ?\) | \(58 = ?\) | \(59 = ?\) | \(60 = \sqrt{0! + 8}! \cdot 10 \) |
\(61 = ?\) | \(62 = ?\) | \(63 = 8^{0! + 0!} - 1 \) | \(64 = 8^{0^{0} + 1 }\) |
\(65 = 8^{0! + 0!} + 1 \) | \(66 = ?\) | \(67 = ?\) | \(68 = ?\) |
\(69 = ?\) | \(70 = 80 - 10 \) | \(71 = \sqrt{( 8 - 0^{0} )! + 1 }\) | \(72 = ( 10 - 0! ) \cdot 8 \) |
\(73 = ?\) | \(74 = ?\) | \(75 = ?\) | \(76 = ?\) |
\(77 = ?\) | \(78 = 80 - 0! - 1 \) | \(79 = 80 + 0 - 1 \) | \(80 = \sqrt{100} \cdot 8 \) |
\(81 = 80 + 0 + 1 \) | \(82 = 0^{0} + 81 \) | \(83 = 81 + 0! + 0 !\) | \(84 = ?\) |
\(85 = ?\) | \(86 = ?\) | \(87 = ?\) | \(88 = ( 10 + 0! ) \cdot 8 \) |
\(89 = ?\) | \(90 = \sqrt{8100 }\) | \(91 = ?\) | \(92 = 100 - 8 \) |
\(93 = ?\) | \(94 = ?\) | \(95 = ?\) | \(96 = ?\) |
\(97 = ?\) | \(98 = ?\) | \(99 = \sqrt{\sqrt{10^{8}}} - 0 !\) | \(100 = \sqrt{\sqrt{\sqrt{100}^{8 }}}\) |