\(1 = ( 102 \cdot 0 )!\) | \(2 = \frac{ 20 }{ 10 }\) | \(3 = 10^{0} + 2 \) | \(4 = \frac{ 10 }{ 2 } - 0 !\) |
\(5 = \frac{ \sqrt{100} }{ 2 }\) | \(6 = ( 10^{0} + 2 )!\) | \(7 = 10 - 0! - 2 \) | \(8 = \sqrt{100} - 2 \) |
\(9 = 10 - 2^{0 }\) | \(10 = 20 - 10 \) | \(11 = 2^{0} + 10 \) | \(12 = \sqrt{100} + 2 \) |
\(13 = 0^{0} + 12 \) | \(14 = 12 + 0! + 0 !\) | \(15 = ?\) | \(16 = ( 0! + 2 )! + 10 \) |
\(17 = ?\) | \(18 = ( 10 - 0! ) \cdot 2 \) | \(19 = 20 + 0 - 1 \) | \(20 = \sqrt{100} \cdot 2 \) |
\(21 = 20 + 0 + 1 \) | \(22 = 0^{0} + 21 \) | \(23 = 21 + 0! + 0 !\) | \(24 = ( \frac{ 10 }{ 2 } - 0 ! )!\) |
\(25 = ( 0! + 0! + 2 )! + 1 \) | \(26 = ?\) | \(27 = ?\) | \(28 = ?\) |
\(29 = ?\) | \(30 = 10 + 20 \) | \(31 = \sqrt{2^{10}} - 0 !\) | \(32 = \sqrt{2^{\sqrt{100 }}}\) |
\(33 = \sqrt{2^{10}} + 0 !\) | \(34 = ?\) | \(35 = ?\) | \(36 = \sqrt{10 - 0!}!^{2 }\) |
\(37 = ?\) | \(38 = ?\) | \(39 = ?\) | \(40 = ( 0! + 1 ) \cdot 20 \) |
\(41 = ?\) | \(42 = ( 0! + 0! ) \cdot 21 \) | \(43 = ?\) | \(44 = ?\) |
\(45 = ?\) | \(46 = ?\) | \(47 = ?\) | \(48 = ?\) |
\(49 = ?\) | \(50 = \frac{ 100 }{ 2 }\) | \(51 = ?\) | \(52 = ?\) |
\(53 = ?\) | \(54 = ?\) | \(55 = ?\) | \(56 = ?\) |
\(57 = ?\) | \(58 = ?\) | \(59 = ?\) | \(60 = ( 0! + 2 )! \cdot 10 \) |
\(61 = ?\) | \(62 = ?\) | \(63 = ?\) | \(64 = 2^{\sqrt{10 - 0 !}!}\) |
\(65 = ?\) | \(66 = ?\) | \(67 = ?\) | \(68 = ?\) |
\(69 = ?\) | \(70 = ?\) | \(71 = \sqrt{( ( 0! + 2 )! + 0! )! + 1 }\) | \(72 = \frac{ ( 0! + 2 )!! }{ 10 }\) |
\(73 = ?\) | \(74 = ?\) | \(75 = ?\) | \(76 = ?\) |
\(77 = ?\) | \(78 = ?\) | \(79 = ?\) | \(80 = ?\) |
\(81 = ( 10 - 0! )^{2 }\) | \(82 = ?\) | \(83 = ?\) | \(84 = ?\) |
\(85 = ?\) | \(86 = ?\) | \(87 = ?\) | \(88 = ?\) |
\(89 = ?\) | \(90 = ?\) | \(91 = ?\) | \(92 = ?\) |
\(93 = ?\) | \(94 = ?\) | \(95 = ?\) | \(96 = ?\) |
\(97 = ?\) | \(98 = 100 - 2 \) | \(99 = 10^{2} - 0 !\) | \(100 = \sqrt{100}^{2 }\) |